
Bilkent University

Senior Design Project

OverSeer

Final Report

Talha Şen
Hakan Sivuk

Ahmet Berk Eren
Cevat Aykan Sevinç

Yusuf Nevzat Şengün

Supervisor: Ayşegül Dündar

Jury Members: Ayşegül Dündar, Selim Aksoy

This report is submitted to the Department of Computer Engineering of Bilkent University
in partial fulfillment of the requirements of the Senior Design Project course CS491/2.

Contents

1. Introduction 5

2. Requirements Details 5

2.1 Overview 5

2.2 Final Functional Requirements 6

2.2.1 Navigation 6

2.2.2 Obstacle Detection 6

2.2.3 Traffic Light Detection 7

2.2.4 Place Discovery 7

2.2.5 Live Support 7

2.2.6 Accessible Control 7

2.3 Final Non-Functional Requirements 7

2.3.1 Performance 7

2.3.2 Usability 8

2.3.3 Integrity 8

2.3.4 Security 8

2.3.5 Availability 9

2.4 Final Pseudo Requirements 9

2.4.1 Version Control 9

2.4.2 Implementation Language 9

2.4.3 Target Platform 9

2.4.4 Frameworks 9

2.5 Final User Scenarios 9

2.6 Final Use Case Diagrams 12

2.6.1 OverSeer Services 12

2.6.2 Live Support Use Case Diagram 13

2.6.3 Navigation Support Use Case Diagram 14

3. Final Architecture and Design Details 14

3.1 Proposed Software Architecture 14

3.2 Design Goals 15

3.2.1 Correct Functionality (Robustness) 15

3.2.2 Usability / User Experience / Accessibility 15

3.2.3 Efficiency 15

2

3.2.4 Maintainability 16

3.2.5 Performance 16

3.3 Subsystem Decomposition 16

3.4 Hardware / Software Mapping 17

3.5 Persistent Data Management 19

3.6 Access control and security 20

3.7 Global software control 20

3.8 Boundary conditions 21

4. Development/Implementation Details 22

4.1 Engineering Standards 22

4.2 Object Design Tradeoffs 22

4.3 Packages 23

4.3.1 Internal Packages 23

4.3.2 External Packages 25

4.4 Class Interfaces 26

4.4.1 Base Systems 26

4.4.2 Event System 27

4.4.3 UI System 29

4.4.4 Startup 31

4.4.5 Navigation Activities 32

4.4.6 Live Activities 35

4.4.7 Detection Activities 37

5. Testing Details 39

5.1 Testing Strategies Adopted 39

5.1.1 Unit Testing 39

5.1.2 Functional Testing 39

5.1.3 Accessibility Testing 39

5.1.4 Non-Functional Testing 40

5.1.5 Integration Testing 40

6. Maintenance Plan and Details 40

6.1 Database Maintenance 40

6.2 Server Maintenance 40

6.3 Application Maintenance 41

3

7. Other Project Elements 41

7.1. Consideration of Various Factors in Engineering Design 41

7.2. Ethics and Professional Responsibilities 42

7.3. Judgements and Impacts to Various Contexts 43

7.4 Teamwork Details 46

7.4.1 Contributing and Functioning Effectively on the Team 48

7.4.2 Helping Creating a Collaborative and Inclusive Environment 50

7.4.3 Taking Lead Role and Sharing Leadership on The Team 52

7.4.4 Meeting Objectives 53

7.5 New Knowledge Acquired and Applied 55

8. Conclusion and Future Work 57

9. Glossary 57

10. References 57

4

Final Report
OverSeer

1. Introduction

OverSeer is a mobile application that aims to remove barriers for
visually impaired people. OverSeer navigates people for the places they
want to go and warns them towards obstacles they face on their paths.
Next, OverSeer provides live support to help them with any problem. They
can ask for price information at a supermarket or they can just want a
volunteer to show the correct location of an object with the help of live
support. OverSeer is fully accessible. Visually impaired users can navigate
across the application with ease and the app can communicate using voice
features.

In this report, we are going to discuss our final system considering
its full life-cycle from requirements to implementation. Then we are going
to talk about other elements such as risks and alternatives, our project
maintenance plan, how we planned our team-work, our ethical and
professional responsibilities and the new knowledge and strategies we
learned and followed.

2. Requirements Details

2.1 Overview

For the visually impaired people who will use our application,
OverSeer was planned to mainly work through voice commands. However,
we realized that to provide such a feature requires complex natural
language processing and due to the time constraints, we decided to look
into other ways of accessibility. Therefore, OverSeer provides a fully
accessible UI for the visually impaired while using voice features of the
device for updating the user. Volunteers are provided a more
sophisticated UI so that UX is improved.

OverSeer provides two main functionality to the visually impaired:
navigation and live stream. Users can search for a place to navigate. The
user can enter their desired location. Once they confirm the address, they
can either save this place as their favorite or start the navigation process.
The app guides the user through voice commands.

Through the navigation, an object detection system works in
parallel. Two systems are provided. One system works in Cloud while the
other one is implemented in the local environment. The user can choose

5

which model they prefer for obstacle detection. This allows the user to
choose between a more performant but Internet consuming service or less
performant but Internet friendly service.

Both systems detect obstacles through travel and warn the user if these
obstacles become a threat for the user. Besides, a traffic light detection
system is used. It aims to detect the current state of the traffic light for
pedestrians and inform the user. For example, when trying to cross a
road, the object detection system detects the state of the traffic light, and
when it lights green, it tells the user to cross the road. Thus, navigation is
made safer with obstacle detection.

The users can also ask other people for help. By using live
streaming, volunteers can connect visually impaired users’ devices to
become their helper eye. The application has a live streaming service that
allows other people to see the environment of the visually impaired user.
All the users will sign in / sign up to the application with their phone
number. This allows us to distinguish different users by their unique phone
numbers. After any user signs in / signs up for the first time, their session
details are saved. This way, they do not have to sign in / sign up again
although they can still logout. Next, Visually impaired users can use the
navigation and live stream services after logging in while volunteers can
advertise themselves as available for help.

2.2 Final Functional Requirements

2.2.1 Navigation

Users are able to tell OverSeer where they would like to travel.
They can save their places of interest and navigate to their point of
interest either through searching or by the saved places. OverSeer guides
users by voice commands for navigation. OverSeer warns users if they are
off-path and guides users back to the correct path. Occasionally, OverSeer
tells the remaining distance to the point of arrival.

2.2.2 Obstacle Detection

While users are traveling, they must be notified if an obstacle is on
their path so that they could avoid potential harm. OverSeer alerts the
user if any obstacle is detected. Obstacles can be cars, poles, holes, fire
hydrants and any other object on the path. OverSeer does not warn users
when these obstacles are not in the user path or within a certain distance
to the user.

6

2.2.3 Traffic Light Detection

Furthermore, traffic lights can be processed to guide the user for
crossing the road. Users can wait for the correct light to cross the road.
Also, it detects the start and endpoint of the midline of zebra crossing and
directs the user accordingly.

2.2.4 Place Discovery

Users are able to tell OverSeer which places they seek at their
current location. OverSeer finds the most relevant places the user asks for
and provides an option to navigate to these places. OverSeer informs the
user about the found places in an accessible manner. A place can be a
pharmacy, restaurant, cafe, ATM.

2.2.5 Live Support

Users are able to ask help with live support. The user will be able to
live stream their environment using their device camera to a volunteer or
their predefined friends, relatives. Visually impaired users can add their
friends by phone and request help by specifically choosing them.
Moreover, they can ask a volunteer for help available at that moment.
Volunteers can advertise themselves as available so that visually impaired
users can ask them for help implicitly using OverSeer.

2.2.6 Accessible Control

The UI in OverSeer is fully accessible for the visually impaired users
according to the guidelines [1]. The accessibility is powered by talkback in
Android systems. Each UI element has its own purpose explained to the
user when they navigate to it. Moreover, each group of UI elements state
their opinion when the page is loaded or the user navigates on the group.
Finally, OverSeer uses the voice features available in Android systems to
report either any errors or meaningful information to the user as a
feedback.

2.3 Final Non-Functional Requirements

2.3.1 Performance

● Obstacle Detection Performance

The Back-end side of the obstacle detection system gets data from the
camera, processes it, and finds the obstacles then warns the user. Besides
the accuracy of the detection task, these events should be fast in order to

7

avoid potential harm from close obstacles. Therefore, the processing times
of the obstacle detection system are really important and the obstacle
detection process should be done within 1 seconds.

Some users may prefer a more Internet friendly approach. As a
result, along with the backend, another obstacle detection system runs
locally although less performant than its Cloud solution. The local system
detects and reports obstacles within 500 ms.

● Live Support Performance

Live support provides both audio and video communication between
the users and the helpers. Hence, the latency of the live support system is
an important concern. There must not be large delays more than 5
seconds to maintain healthy communications.

2.3.2 Usability

OverSeer must be easy to use for in-app navigation. Therefore,
These voice commands should be simple and effective. Also, OverSeer
must avoid ambiguity and inform users about their actions. It should
inform users which page they are on and what they can do on it. Each UI
component must have an explanation by the Talkback feature defined in
the Android systems. There should not be any UI component that does not
describe what its purpose is.

2.3.3 Integrity

The integrity of the obstacle detection system is crucial because any
miscalculation can lead to an accident. Therefore, the obstacle detection
algorithms must be accurate and consistent. Also, the computer vision
algorithms may work with errors, so the most reliable computer vision
libraries should be used to minimize any kind of error.

2.3.4 Security

The security of both visually impaired and volunteer users are
important. Some bad volunteers can mislead or make fun of the visually
impaired user. In order to avoid these issues, the live support system
should have a report function. So, the users can report any bad behavior
of the volunteer and the volunteer can be banned from the application.
Also, banned users should not create another account. Therefore, phone
numbers will be treated as unique ids to associate users with their
accounts.

8

2.3.5 Availability

OverSeer must be available 7/24 because the users of the
application may need assistance anytime. As a result, OverSeer backend
services will be deployed to Amazon Cloud Services as it is one of the
most reliable services.

2.4 Final Pseudo Requirements

2.4.1 Version Control

Git/Github must be used as a version controller throughout the
project. As the group members are familiar with Git, this allows
seamlessly fast collaboration between the developers of OverSeer.

2.4.2 Implementation Language

Java and Kotlin will be used for the project. Normally, the project
was going to be developed using React Native library. However, our
obstacle detection requirements demanded a native solution which could
not be done with React Native. Therefore, Android Studio and Java/Kotlin
are the main implementation languages. Java is preferred over Kotlin
since developers are more familiar with Java. However, some Kotlin code
will be used to handle implementation cases where Java is not enough
such as in dealing with dependencies.

2.4.3 Target Platform

Since the application is implemented in Android studio, the target
platform is Android systems. Our goal used to deploy the project for both
platforms. However, due to problems requiring native solutions, we
decided that native implementation would be better. IOS support will be
discussed in the maintenance plan section.

2.4.4 Frameworks

Python3 and SageMaker API are used in the backend side of the
project. Android Studio is used for the frontend side while Gradle is used
for building the project.

2.5 Final User Scenarios

● Selecting a Destination, Navigating to It and Crossing a Road

9

A visually impaired user starts the navigation with “Open
Navigation” voice command. The app gets a destination from the user,
and the app searches saved locations to see if the selected destination is
included in them. If not, the app tries to search the destination on the
map and if it cannot find it, it asks for another destination. If it does, it
marks the destination and the navigation starts. As the user travels to the
destination, an obstacle detection system tries to detect obstacles along
the way and warn the user if any threatens the user. While traveling, the
user may need to cross a road, in which case the app detects the traffic
light and checks until it lights green. When it lights green, it notifies the
user to cross. This process continues until the user reaches their
destination. Navigation stops when the user reaches their destination.

● Saving a Destination and Using It With Its Name

OverSeer keeps all the destinations in its memory. When the user
wants to go to a destination, the application asks the user if the
destination to be saved. The user gives a name to the destination while
saving it as frequently used. After this process, the user can access the
destination on their saved places.

● Matching Socks With the Help of Live Support

A visually impaired user wants to match his/her pairs of socks. The
user starts the application and navigates to the live support page using
the UI powered with talkback. The user asks for help from his/her
pre-saved contact or available volunteers by selecting the help type they
require that is read out by talkback.. OverSeer finds an available
volunteer and connects him/her to the user.

● Searching and Advising Locations to the User

The user gives a location type (eg. supermarket, train station, bar)
to the application, then the application searchers for near locations fitting
this type. If it does not find one, it asks for another location type to the
user. If it does, it gives a location advice to the user. User makes their
preference and the application marks the chosen location as a navigation
destination and starts the navigation.

● Volunteer user helping the visually impaired user

A volunteer user for OverSeer marks themselves as “available”.
After this, a visually impaired user can ask for assistance from available
volunteers. A notification is sent to the volunteer, which they can accept
or decline. If accepted, OverSeer tries to establish a connection between
the two users. If connection is failed, the volunteer goes back to the
available state, if not, a livestream starts from the visually impaired user
to let the volunteer help.

10

● Registration Scenario

The user registers to the app by giving his/her phone number and
determining a password. He/she also indicates whether he/she is a
visually impaired person or a volunteer. After this process, he/she can
login with its phone number and password. Signing in/up one is enough to
save their session details.

● Visually Impaired Person Adding Friends

A visually impaired person can allow the application to access the
phone book. This means that the application could add relatives or friends
of the visually blinded user as friends in the application. This way, the
visually impaired person may easily ask for help from their friends saved
in the application.

● Live Support with a User from Friend List

The user selects another user from his/her friend list and if this user
is available, make a live support call with him/her.

11

2.6 Final Use Case Diagrams

2.6.1 OverSeer Services

Figure 1. OverSeer Services Use Case Diagram.

Visually impaired users are able to navigate in the app using
talkback features. They could use navigation or live support. Volunteer
users are capable of using live support as well.

12

2.6.2 Live Support Use Case Diagram

Figure 2. Live Support Use Case Diagram.

Visually impaired users are able to use the UI powered with
Talkback to navigate in live support service. They must be able to search
for help, whether it is a volunteer or their friend. They can add their
friends to OverSeer. Both user types are able to match with each other to
communicate while volunteers may see the environment throughout the
device camera of visually impaired users. They are able to hear each other
after the connection is set up.

13

2.6.3 Navigation Support Use Case Diagram

Figure 3. Navigation Support Use Case Diagram.

Visually impaired users are able to use the accessible UI provided
with Talkback to navigate in the navigation support. Users can search for
a place, save this place, navigate to this place. During navigation, they
could get assistance on detecting obstacles.

3. Final Architecture and Design Details

3.1 Proposed Software Architecture

For the visually impaired people who will use our application,
OverSeer provides an accessible design. The user can start OverSeer’s
navigation as it's one of the main functionalities. Next, the user can also
ask other people for help. The application has a live streaming service that
allows other people to see the environment of the visually impaired user.
All the users have to sign to the application with their phone number, and
they choose if they are visually impaired, meaning they will use the
application for navigation or if they are voluntary helpers, meaning they
will use the application to help the visually impaired users through live
streaming.

14

OverSeer provides a software architecture that can provide the
required services. The architecture is layered in a way to provide such
services. The bottom of the layer is the core of systems. The core systems
provide the base functionalities required in other services. These core
systems can be used by any other complex systems in OverSeer. Core
systems include persistent data management, database management,
event system. Next, on top of the core system is the service layer. This
layer is where required functionalities such as navigation, accessibility and
live stream is provided. These systems define new libraries unique to
themselves while using the services of the core systems. At the very top is
the input layer where the user interacts with OverSeer. Input layer
consists of UI and accessibility. It is responsible for creating events for
handling user interaction and displaying the correct response to such
actions. Thus, this layered approach in our monolithic architecture allowed
us to divide and conquer required functionalities in OverSeer while reusing
most of the code written.

3.2 Design Goals

3.2.1 Correct Functionality (Robustness)

The application is used by mainly visually impaired. As a result, the
functionalities we provide must be robust and the architecture must be
designed accordingly. As a result, we emphasized tests on the
implemented services with the software architecture. Moreover, we
integrated trustworthy external APIs when implementing such services.
We separated each sub system in the architecture to encapsulate their
functionalities while decoupling them. This increased the robustness of
services since an error in a system is only contained in that system.

3.2.2 Usability / User Experience / Accessibility

Our application must be easy to use for the visually impaired.
Therefore, the architecture must comply with accessibility best-practises
and guidelines. Accessibility tests were performed to ensure this.

3.2.3 Efficiency

The application must be developed while aiming for efficiency. This
is important because the machine learning model and the application must
be responsive. When an input is given by the user, they should not wait
for the response. This is a must for the machine learning model. While
users are navigating to locations, the machine learning model must detect
obstacles and report them in time. If the model is not responsive, this

15

would decrease the safety of the OverSeer. The architecture in OverSeer
is open for efficiency while preventing premature optimization.

3.2.4 Maintainability

The system must be maintainable. It is going to be used by users in
the following years. Each service needs maintenance to have a consistent
correct functionality and improved service quality after OverSeer is
published. As a result, we aim for an independent state-like system. As a
result, if a failure happens in one system, then other systems would be
unaffected. This would allow developers to maintain OverSeer as the
changes made in one state would not be visible to other states. This
state-pattern would also comply with the correct functionality design goal.
Services such as live support and navigation are our main states.

3.2.5 Performance

OverSeer will rely on network connectivity on some functionalities
such as location suggestion, improved navigation quality, and live support.
As a result, network performance is important for OverSeer. The
architecture in OverSeer is designed in a way to optimize the connection
to the backend.

3.3 Subsystem Decomposition

Figure 4. Subsystem Decomposition.

16

● UIHandler

This subsystem is for our UI. This subsystem is responsible for
implementing the accessible UI for the visually impaired users while also
answering volunteers. As a result, this subsystem would be responsible for
handling the UI inputs from both users.

● EventFlow

OverSeer would be event-driven. This would allow the systems to
be independent. EventFlow will handle the event flow in the system while
managing subscribers. When an event is raised, event flow will collect this
event and notify any listeners.

● Core Systems

This subsystem will be responsible for implementing core services
required by support sub systems. These services include persistent data
management, event system and database connection.

● Support

Main functionalities of our application will be provided by the
support subsystem. Users can choose which support they want to use and
each support can handle their request using an event-driven approach.

● Client / Server Communication

This subsystem is responsible for handling connections between
clients and the server. This subsystem would complement other support
systems when they need network services.

● UserHandler

This subsystem will handle any user-specific task such as login,
register, and persistent user data, reporting volunteers.

3.4 Hardware / Software Mapping

● Detection Support

Hardware/software mapping of the detection support is rather
complex. There is both the client machine and cloud. This means that the
detection related software operations are performed on either the user's
hardware system or on Cloud. When the detection related software
operations are performed on the user’s hardware, we use NPU (Neural
Processing Unit) specialized for neural network systems. We use the
storage of the user phone for storing model weights for the local model

17

and store weights of the cloud model in SageMaker. User decides which
mapping will be used for execution.

Figure 5. Deployment Diagram for Detection Support

● Navigation Support

Hardware/software mapping of the navigation support is simple.
There is only the client machine and the navigation-related software
operations are performed on the user's phone hardware system. We use
the location services of the client machine to find the location.

Figure 6. Deployment Diagram for Navigation Support

18

● Live Support

Figure 7. Deployment Diagram for Live Support

Hardware/Software mapping for live support consists of a server
and 2 clients which are a visually impaired user and a volunteer. The
server operates on an online host and the user interface for each user
operates on the client smartphone hardware as a software. The server
provides a visual and audio connection between users. The server also
stores the IDs of the users.

3.5 Persistent Data Management

Images will be kept in the local hard disk of the users. This is
because we believe it is unnecessary to load images from an online source
because of performance. If images are kept in local hardware, then this
problem is solved. This is a tradeoff as the memory space increases while
the performance is optimized.

In addition to this, we also have a database that holds the userIDs
and passwords of the registered users. This is because a user must
register an account one time and they must use that account to login
every other time. If we made the user register an account every time they
wanted to use OverSeer, it would reduce the usability and performance.
OverSeer has a server that manages all the data related to the other
accounts. It is persistent and independent of the application from a local
environment.

19

In the local environment, we store the session of the player using
Android system’s preference manager. This allowed us to store data
related to users. As a result, key information such as session data and
settings are stored on the user device.

Apart from these, trained machine learning weights must be stored,
because we need them for obstacle and traffic light detection. Since it is a
real-time object detection task and it should be fast for producing
sufficiently early warning, performance is crucial for detection systems.
Therefore, these weights are kept in the both local hardware of the user
and in the cloud.

3.6 Access control and security

OverSeer has an accounting system with unique userIDs and
passwords. These passwords are kept as hashed inside the main server to
avoid account theft. In the register, the phone number of the user is used
as a userID. Therefore, if an account is banned from the system the
owner of the account can not register again with the same phone. This
aims to avoid harmful users to use OverSeer. Consequently, if a user got
banned from the system, then they can not reaccess it.

In live support, the volunteer can access only the camera and
microphone data of the visually impaired user. On the other hand, visually
impaired users can access only the microphone data of the volunteer
during the call. Such permissions are asked to the user when they start
using OverSeer.

In our obstacle detection system, there are not any different users.
Because of this, there is not any special access control for users. As the
system is working in a local environment, there are not any security
concerns for our obstacle detection system. In the cloud model deployed,
connection is secure as secure since we are using Amazon SageMaker. As
a result, local hardware only sends the inputs to the SageMaker while
getting the output. User information is not sent to the SageMaker. Thus,
security is ensured.

3.7 Global software control

Since the server provides services to all users, it is possible to face
race conditions when different users try to use the same data. To prevent
any problem, the server should be event-driven. It should handle its tasks
in an event-driven way where services are executed when the related
event is called. In addition to preventing race conditions, event-driven
programming is an important way of providing quick and accurate

20

responses to the client. Event-driven programming is supported by many
programming languages, and it will be used especially for the
communication between server and client.

The local software in the client would be state-driven. This is
because separating service logic increases the robustness. Each state
would be responsible for handling their own events in a decoupled
manner. This way, the software is easier to control and debug. Each state
can handle its exceptions and boundary conditions.

3.8 Boundary conditions

● Initialization

When users want to use the application for the first time, they are
navigated to the login screen where they can either log in to or register an
account. After successful authentication, the user is navigated to the main
screen where one can start navigation support or request help from a
volunteer (visually impaired user’s point of view). If they request help, the
server sends notifications to available volunteers. When one of them
accepts the request, the server initializes the video call. If the user wants
to use the navigation support, the target address is asked by the
application. After the user enters the information, the route is determined
and the navigation service starts.

Also, the server must be initialized. Initialization of the server
includes initializing sockets and connection ports, initializing database
connection, creating necessary objects, and calling proper listening
methods for the server & client communication in SageMaker.

● Termination

When the live support service is terminated accidentally (such as
internet connection loss), the user waits for a while. If they cannot or do
not reconnect, the video call is terminated by the server.

● Failure

As correct functionality is one of the most important design goals
for us, our system will have a strict event flow to force users to follow the
expected events. User inputs will be handled as stated in the correct
functionality design goal. The application will not respond to any input
other than defined user functionalities.

User authentication failures can happen if the user either enters the
wrong username-password combination or if he tries to register an
account with a username that already exists in the database. If the
application cannot find a volunteer for the visually impaired user, the

21

process must be terminated. Most importantly network failures can
happen and any one of the users can lose connection to the internet at
any point. In the case of live support, the video call must be terminated
and everyone should be directed to the main screen.

Also, since the server must run always, it must be robust in terms
of failures. It should have a proper mechanism for handling exceptions
and boundary cases. As it should handle these exceptions, it should also
send proper error messages to the client to inform the user. For
implementing this mechanism, different error and response models are
implemented.

4. Development/Implementation Details

4.1 Engineering Standards

It is important for our application to comply with the standards of
the software. Standards provide documentation to ensure reliability and
quality [2]. Since OverSeer is developed for the visually impaired, it is
critical to provide safety, security, and reliability.

Our goal is to comply with ISO standards. ISO ICS 35 provides
standards over information technology. By the end of our development
life-cycle, we aim to comply with software standards by following ISO ICS
35.080 documentation on quality assurance [3].

4.2 Object Design Tradeoffs

Our software architecture will be monolithic event-driven
architecture. This is because monolithic architecture is simple to
understand and implement while events enable developers to decouple
subsystems. To control and distribute events, there will be an event
center where each observable element reports itself. Any object can
subscribe to any observable during its lifetime. As a result, when an event
is raised, any subscriber can receive it instantly.

Event-driven designs are hard to debug and maintain. However, we
believe a decoupled logic is cheaper to modify, thus, outweighing its
disadvantages. We will use the component pattern to allow an object to
subscribe to multiple events by controlling the full life cycles of concrete
Observer objects. The object will have strict control over its components.
These components will be encapsulated in a wrapper object, acting as an
API for concrete objects to control their event flow.

22

One of the key design goals of our application is accessibility.
Visually impaired users must be able to navigate the app on their own.
Considering many accessible UI elements will be exposed to the user,
their actions have to be controlled. To separate accessibility logic, and
button functionality, the command design pattern will be used.

The application has a singleton service center. OverSeer has two
main services: navigation and live stream. Moreover, there are support
services such as object detection and accessibility. There should be only
one service instance that must act as an API for the control objects. These
services will be encapsulated in a singleton factory object, allowing ease of
access to any service. Although this increases coupling, the services act as
an API. Therefore, depreciated function calls could easily be refactored.

4.3 Packages

4.3.1 Internal Packages

● Camera2

Camera2 is the internal hardware package Android provides after
the Camera package got deprecated. From the official documentation:
“This package models a camera device as a pipeline, which takes in input
requests for capturing a single frame, captures the single image per the
request, and then outputs one capture result metadata packet, plus a set
of output image buffers for the request. The requests are processed
in-order, and multiple requests can be in flight at once. Since the camera
device is a pipeline with multiple stages, having multiple requests in flight
is required to maintain full framerate on most Android devices” [4].

We use this package to obtain a manager and control the back
camera of the phone (if it exists and if we get permission to it) to scan the
environment, obtain frames and send it to the detection subsystem for
prediction and further processes. It is an essential package to our
detection support subsystem.

● Android.Speech.TTS

Android system library for processing text input to output voice
commands. This package is used by the feedback service to alert the user
on various activities.

23

● Startup

This package defined under OverSeer includes the classes required
in startup such as sign in & up.

● NavigationActivities

NavigationActivities package consists of navigation classes that
handle the navigation support. The responsibilities include searching for a
palace, saving a place and navigating to a location.

● LiveActivities

LiveActivities package includes classes related to live support
functionality. This package is responsible for handling friends, calling a
friend or calling a volunteer. From a volunteer’s point of view, volunteers
can advertise themselves as available for call and accept incoming calls.

● Adapters

Adapters package includes adapters for scroll view UI in OverSeer.

● Models

Models package includes model classes for the Adapters package.

● Systems.BaseSystem

The BaseSystem package implements the core systems used in
OverSeer. Every system derives from the BaseSystem.

● Systems.FeedbackSystem

Feedback system package provides support for abstraction of the
voice feedback.

● Systems.EventSystem

The Event system package provides a global event access point to
each class in any package in OverSeer.

● Systems.Utilities

Utilities provide general purpose services such as persistent data
management and constant key access.

● Systems.UISystem

The UI system provides the accessible base UI classes to provide
general purpose extensible UI programming.

24

4.3.2 External Packages

● Pytorch

Pytorch is a well-known machine learning library that allows
developers to train and use several types of models for many tasks. In
this project, Pytorch is used for training machine learning models (in
Python). To load these trained model weights and perform detection
tasks, Pytorch Android library is used. It is essential for us to use
optimized algorithms of this library for a lower inference time and a more
efficient system performance.

● TFLite

TFLite(TensorFlow Lite) is a set of tools provided by a well-known
machine learning library TensorFlow. It allows developers to use machine
learning models on mobile devices with different options such as GPU or
NNAPI delegation for the machine learning task. In this project, TFLite is
used for making use of special hardware called NPU (Neural Processing
Unit) on mobile devices which is specialized for neural network systems. It
is essential for us to use this special hardware for a lower inference time
and a more efficient system performance.

● Mapbox.Directions

Mapbox.Directions API can provide point to point navigation routes
with several alternatives. The given routes are combined with directions.
The directions are separated by turns throughout the route. Additionally,
the API provides a textual explanation of each direction along with the
star and end coordinates.

● Mapbox.MapMatching

Mapbox.MapMatching API provides the real-time information for the
user. For example, it provides the direction of the user and matches
between the direction and the route. Also, it can provide remaining
duration information about the route.

● Mapbox.Geocoding

Mapbox.Geocoding API provides basic search capabilities. Searching
locations with a keyword is its main capability. It provides several
alternatives for the given keyword regarding user’s current location, the
popularity of places, and several other metrics. This API also provides
special IDs (POI) to places. This way, a place can be represented by a
unique ID (POI), and the location can be stored easily.

25

● Mapbox.VectorTiles

Mapbox.VectorTiles API provides the required visual contents for
the application. It includes the map itself mainly, but not limited to that.
The API also provides real-time route and location drawing onto the map.
This way, the user can follow the route visually, as well, which will be
optional in our application.

4.4 Class Interfaces

4.4.1 Base Systems

Figure 8. Base Systems Low Level Design

Base systems provide a global access to classes in the application.

● OverSeer

Attributes:

● static Hashtable< SystemType, BaseSystem> systems: Stores
every system type in a collection for global access.

Methods:

● public static GetSystem(SystemType type): returns the specified
system to the caller from the systems.

● Constants

Provides a location for constant keys used across application.

● PreferenceManager

Attributes:

26

● Sharedpreferences sharedPreferences: provides application domain
level persistent data management.

Methods:

● public void putBoolean(String key, Boolean value): puts a boolean
to the application reserved memory.

● public Boolean getBoolean(String key): gets a boolean from the
application reserved memory.

● public void putString(String key, String value): puts a string to the
application reserved memory.

● public void getString(String key): gets a string value from the
application reserved memory.

● public void clearPreferences(): clears the application reserved
memory.

● FeedbackSystem

Attributes:

● TextToSpeech tts;

Methods:

● public void NotifyEvent(FeedbackEvent event): notifies the event
so that tts can play voice.

● BaseSystem

Provides an abstract inheritance for each system.

4.4.2 Event System

27

Figure 9. Event System Low Level Design

Event System is responsible for managing and distributing events.

● Abstract CustomEvent

Base for every custom defined event. Empty class.

● EventCenter

Attributes:

● static Hashtable< Class<? extends CustomEvent>,
HashSet<ISubscriber<CustomEvent>> eventSubscriberLists:
Stores every observer of type custom event in the relevant set.

Methods:

● public static <T extends CustomEvent> void RegisterSubscriber(
Class<T> type, ISubscriber<T> subscriber): Makes a subscriber
(observer) unregister listening to the custom event T.

● public static <T extends CustomEvent> void UnregisterSubscriber(
Class<T> type, ISubscriber<T> subscriber): Makes a subscriber
(observer) unregister listening to the custom event T.

● public static <T extends CustomEvent> void SendEvent(T event):
Sends event to the subscribers.

● ISubscriber<T>

Methods:

● public void notifyEvent(T event): Contracts a concrete class to
receive events of type T.

● Abstract SubscriberComponent<T>

Methods:

● public void SubscribeToEvents(): Subscribes to the events of type
T.

● public void UnsubscribeToEvents(): Unsubscribes to the events of
type T.

● Concrete Class<? extends Object>

Represents that any class having SubscriberComponents may
receive events and any class can create any type of event.

28

4.4.3 UI System

Figure 10. UI System Low Level Design.

● IAccessible

Methods:

● public void setHintText(): Receives feedback event. Checks if the
system can play the feedback. Else, adds the feedback request to
the queue or interrupts the current feedback according to the
request.

● public void setSelectedText(): Checks if the android system is
available for playing sound.

● public void setupAccessibility(): Receives UI events and calls
requested commands.

● Abstract AccessibleUIBase

Methods:

● public void onTouch(): Starts accessibility functionalities upon
touch.

● Abstract AccessibleInputField

Methods:

● public void onInput(): Gets the input from the accessible ui element
and makes the relevant input event for the command center.

● AccessibleCheckBox

29

Base class for accessible generic checkbox. The engineer may use
this class to create concrete checkboxes to get input on a variety of
functionalities.

Attributes:

● Checkbox checkbox: Checkbox ui component.

● AccessibleTextField

Base class for accessible generic text field. The engineer may use this
class to create concrete text fields to get input on a variety of
functionalities.

Attributes:

● TextField textField: TextField ui component.

● AccessibleUILabel

Base class for accessible generic label. The engineer may use this
class to create concrete labels to navigate the user in-app.

Attributes:

● Label label: Label UI component.

● AccessibleUIButton

Base class for the accessible generic button. The engineer may use
this class to create concrete buttons to get input on a variety of
functionalities.

Attributes:

● Button button: Button UI component.

● AccessibleUIGroup

Groups multiple accessible elements to make them one accessible
group component.

Attributes:

● IAccessible accessibleComponents: Accessible children components

30

4.4.4 Startup

Figure 11. Startup Low Level Design.

● EntryActivity

Methods:

● public void onVolunteerSelection(): loads the startup activity for
volunteer users.

● public void onUserSelection(): loads the startup activity for visually
impaired users.

● StartupActivity

Attributes:

● UserType userType: type of the user, indicates volunteer or visually
impaired.

Methods:

● onSignin(): loads the sign in activity for the userType.

● onSignup(): loads the sign up activity for the userType.

● SignupActivity

Attributes:

● UserType userType: type of the user, indicates volunteer or visually
impaired.

31

Methods:

● public void signUp(): signs up the user.

● public void sendWarning(): sends the stated warning to the user.

● SigninActivity

Attributes:

● UserType userType: type of the user, indicates volunteer or visually
impaired.

Methods:

● public void launchMainMenu(): launches the main menu for the
userType after sign in.

● public void sendWarning(): sends the stated warning to the user.

● public void signIn(): signs in the user.

4.4.5 Navigation Activities

Figure 12. Navigation Activities Low Level Design.

● NavigationActivity

Attributes:

● NavigationView navigationView: displays the mapbox navigation
view screen. It is the active navigation map.

● Location lastKnownLocation: last known location of the user.

Methods:

32

● public void startNavigation(): starts the navigation activity between
the source location and destiny location.

● public void fetchRoute(): fetches the route from the source of the
user location to the destiny location for the navigation activity.

● public void setupOptions(): sets up the options for the navigation
MapBox activity.

● public Location getLastKnownLocation(): returns the last known
location of the user.

● LocationSearch

Attributes:

● CategorySearchEngine categorySearchEngine: provides the list of
categories to search for.

● SearchRequestTask searchRequestTask: Communicates the request
for the search to the MapBox API.

● SearchCallback searchCallback: handles the callback after a search
is made.

Methods:

● public void forwardGeocoding(): forwards the geocode to the
MapBox API for searching a location depending on the category.

● LocationPreview

Attributes:

● Long DEFAULT_INTERVAL_IN_MS: interval to send requests.

● Long DEFAULT_MAX_WAIT_TIME: maximum wait time for a
request.

● MapBoxMap mapBoxMap: map box API to provide a view of the
locations on screen.

● MapView mapView: map screen.

● PermissionManager permissionManager: handles permissions.

● LocationEngine locationEngine: handles the location related queries
of the user.

● DirectionsRoute currentRoute: encapsulates the route calculated
from the source location to the target location and drws it on the
graph.

33

● NavigationMapRoute navMapRoute: the object handling queries
related to route calculations.

● Location originLocation: the location indicating the current location
of the user.

● Double destLatitude: latitude of the selected target location.

● Double destLongtitude: longitude of the selected target location.

Methods:

● public void onMapReady(): callback for map box API to indicate
map services are ready to be used. Used for setting up location
details.

● public void fetchRoute(): fetches the route from the MapBox API
once the user indicates their target location.

● public void enableLocationComponent(): enables location
components by using permissions.

● public void initLocationEngine(): initializes location engine to
calculate current location on the world.

● LocationFavorites

Attributes:

● PreferenceManager prefManager: preference manager to handle
persistent data.

● List<FavPlace> favoritePlaces: a list of saved places indicated by
the user.

● FavoritePlacesAdapter favAdapter: adapter to convert favorite place
object into an UI representative.

Methods:

● public void getFavoriteSavedPlaces(): returns the list of favorite
places of the user and displays.

34

4.4.6 Live Activities

Figure 13. Live Activities Low Level Design.

● LiveActivity

Attributes:

● PreferenceManager prefManager: preference manager to handle
persistent data.

● List<User> users: list of users that are friends of the user.

● List<String> contacts: list of the names of the friends represented
as saved contacts.

● UsersAdapter usersAdapter: Adapter to display a user on UI.

Methods:

● public void getContacts(): initializes the contacts of the user.

● public void getUsers(): initializes the users saved as friends in the
current user.

● public void sendFCMTokenToDB(): sends session details to the
database.

● public void initiateVideoMeeting(): initiates the video meeting
between an user and this user.

● IncomingCallActivity

Attributes:

● BroadcastReceiver callResponseReceiver: broadcasts and handles
call requests.

Methods:

35

● public void sendRemoteMessage(): sends a call request to a JitSi
user.

● public void sendCallResponse(): sends a response to the call
request of a JitSi user.

● OutgoingCallActivity

Attributes:

● BroadcastReceiver callResponseReceiver: broadcasts and handles
call requests.

Methods:

● public void sendRemoteMessage(): sends a call request to a JitSi
user.

● public void cancelCall(): cancels a call request.

● public void initiateMeeting(): initiates the meeting once the callee
accepts the request.

● Pop

Attributes:

● PreferenceManager prefManager: preference manager to handle
persistent data.

Methods:

● public void addContacts(): adds a user as a contact.

36

4.4.7 Detection Activities

Figure 14. Detection Activities Low Level Design.

● Recognition

Attributes:

● String id: unique id.

● String name: name of the recognize class.

● int detectedClass: class of the detection.

● float confidence: confidence level.

● RectF location: location in the image defined by rectangles.

● float[] coordinates: coordinates of the detected class.

● Classifier : Interface

Provides an interface for all classes that contracts them to
recognizeImage(Bitmap bitmap) to process images.

● AndroidMLModel

Methods:

● public void recognizeImage(Bitmap bitmap): processes the image
for local detection support.

37

● CloudMLModel

Methods:

● public void recognizeImage(Bitmap bitmap): sends a request to
the cloud model that processes the image and returns the outcome.

● TrafficLightModel

Methods:

● public void recognizeImage(Bitmap bitmap): recognizes the traffic
lights according to the customized traffic lights model.

● DetectionProcessor

Attributes:

● float confidenceThreshold: threshold that drops output when certain
confidence is not met.

● double locationThreshold: the threshold for locations once they are
found to see if they meet location criteria.

● int detectionThreshold: the threshold for detection that drops
certain findings that does not meet this threshold.

● int maximumFrameCountBeforeRemoval: the frame count to
remove before processing.

● TrafficLightModel trafficLightModel: the model that processes
images for traffic light detection.

Methods:

● public void processResults(): processes each model's result
according to the models.

● public void processTrafficLights(int light, float[] crosspoints):
processes traffic lights found in the image, determines their current
status.

● NavigationActivity

Attributes:

● AndroidMLDetector androidDetector: android ML detector model.
Used as an API.

● CloudMLDetector cloudDetector: cloud ml detector model. Used as
an API.

38

● DetectionProcessor processor: processor that handles traffic light
detection and detection criteria.

Methods:

● public void processImage(Bitmap bitmap): processes the given
image for each model and processor.

5. Testing Details

We integrated manual testing versus continuous testing. Although
an automated testing environment indicates that the development pipeline
is more reliable, our project did not require such complex testing
platforms. This is because OverSeer is not a large-scale project. OverSeer
is developed by five developers. As a result, each developer is responsible
for independent sub-systems. This indicates that each developer could
work freely without breaking other subsystems in OverSeer. Although
manual testing is more time consuming than continuous testing, creating
such a complex continuous testing environment would have been an
extravagant task. Therefore, our testing strategy is based on manual
testing. However, we plan to include continuous testing for the
maintenance of our project in the long scope [5].

5.1 Testing Strategies Adopted

5.1.1 Unit Testing

Our core classes are tested with JUnit. Unit tests allowed us to
observe if the classes implement their expected behaviors.

5.1.2 Functional Testing

Each requirement listed in the functional requirements section is
tested for acceptance. This ensures that OverSeer delivers the promised
functionality to the users. This testing allowed us to find the right UX for
our users while providing comfortable services.

5.1.3 Accessibility Testing

This is one of the most important test strategies we followed. Our
application is fully accessible for the visually impaired. Therefore,
OverSeer has to meet certain accessibility standards. We ensure this by
using this testing to test accessibility standards described in the official
guidelines [6].

39

5.1.4 Non-Functional Testing

OverSeer must meet certain technical standards described in non
functional requirements such as performance and integrity. As a result,
non-functional testing is performed. Simulations are created to profile the
performance of OverSeer to determine if a certain non-functional
requirement is satisfied. If the results profiled prove that certain areas are
under-performing, we optimize such non-functional requirements. This
allowed us to avoid premature optimization while providing robust
services.

5.1.5 Integration Testing

OverSeer consists of different services provided to the users. This
indicates that services are independent of each other. Each service is a
distinct subsystem. This allows the developers to implement their
subsystems in parallel as subsystems do not have any data flow in
between. However, users have to be able to use services in any sequence.
Consequently, we performed integrations tests to observe if different
services could be run and deployed without disturbing their services.

6. Maintenance Plan and Details

We have three separate plans considering OverSeer. These plans
include database, server and application maintenance. Our maintenance
strategy includes building a DevOps pipeline while monitoring application
performance [7].

6.1 Database Maintenance

OverSeer uses Firebase DB to keep records of the users signed in or
signed up. Therefore, it is very important to maintain the database in
order to keep it updated. This would make OverSeer services more robust
as the data will be kept in a clean database. To accomplish this,
developers are going to follow the guidelines on database maintenance
including regular backups, optimized queries, data integrity, efficient
indexing while adapting change management [8].

6.2 Server Maintenance

The servers in OverSeer are responsible for processing data by
custom machine learning models. Therefore, scalability is the key target of
the maintenance for the servers. Developers will continuously monitor the
performance of the server, its response time and ability to deal with

40

simultaneous requests. Moreover, since the servers contain the machine
learning model, models would be maintained as well. Developers would
continue training the models, simulating its performance to ensure that
the users get a robust service while they are using OverSeer [9].

6.3 Application Maintenance

For the maintenance of our project, developers realize the
importance of change management. As a result, today’s feature code will
be tomorrow’s legacy code. In order to deal with the change factor in
software, developers will implement a DevOps pipeline to adopt
continuous integration and continuous delivery. This would allow
developers to integrate continuous redundancy tests.

Developers have used Git for version control and Github Issues for
bug management. Furthermore, developers will switch to Jira to track
issues and keep a detailed log of bug management history while dealing
with change. Therefore, while Git/Github are to be used for source control,
Jira will be used to maintain bugs and issues. Moreover, developers will
follow the application maintenance best practises while following user
feedback. These best practises include updating software to adapt to its
environment while dealing with change [10].

7. Other Project Elements

7.1. Consideration of Various Factors in Engineering Design

We have considered various factors in order to make the project
valuable and flawless. The first main consideration is about the
collaboration of the team. The tasks, both engineering and managing
tasks, were divided equally among the group members according to
interests and knowledge of the members. The managing tasks were
divided into four different parts including arranging meetings, managing
engineering jobs, keeping track of reports, communicating with external
actors. This allowed us to divide and conquer problems arising in
OverSeer. We used Github issues to track our progress and problems
encountered throughout CS491/CS492. This allowed us to be transparent
in OverSeer life-cycle management, allowing us to design a robust
system.

The second main consideration of the project is the user interface
which is suited to the visually impaired users. The user interface must be
easy to use and also accessible. Therefore, we engineered our design to
be controlled by voice commands. However, this was not a realizable

41

objective for the scope of OverSeer. Consequently, we focused on
accessibility guidelines for the visually impaired users. Furthermore, we
ensured that the results of user actions are reported by using the voice
functionality. Last but not least, our engineering design is optimized for
accuracy, response time and UX. Therefore, non-functional requirements
have an important impact on our engineering design.

The security of the visually impaired people and the volunteers is
another topic we considered in our engineering design. Some
bad-mannered volunteers can mislead or make fun of the visually
impaired user. In order to avoid these issues, the live support system
includes a report function. Hence, the users can report any bad behavior
of the volunteer and the volunteer can be banned from the application. To
ensure such actions have impactful consequences, banned users must not
be able to create another account in OverSeer. Therefore, user
registration includes unique phone numbers assigned to each user. When
a user is banned, their phone number is blocked from accessing OverSeer.
More precautions could have been taken such as providing IP ban or
hardware ban. However, for the scope of OverSeer, this design was found
to be resourceful.

Financial problems are the last main consideration of the project. In
order to make a project which has an affordable cost for both the users
and the developers, the platform of the application is determined as
mobile devices. Also, computer vision is implemented in the application to
detect obstacles instead of external sensors. This makes the engineering
design of OverSeer both affordable and available for everyone.

7.2. Ethics and Professional Responsibilities

Our topic is about visually impaired users, so we have a lot of
ethical and professional responsibilities. One of the biggest ethical
responsibilities we have is making our target audience not to feel
separated from society. To fulfill this responsibility, we designate
requirements accordingly that comply with accessibility guidelines.
OverSeer allows visually impaired users to navigate freely and get help
whenever they require. This makes visually impaired users live in a
society where they can join as individuals.

Developers have dealt with significant professional and ethical
issues. Most importantly, the live support system can be abused by
malicious people who do not intend to help the user, and we have
implemented several plans to deal with this issue. Our precautions include
authentication by unique phone numbers and verified supporters. As
developers, it is our responsibility to protect users’ data and we also need
to show that their data will not be used outside their permission or in any

42

malicious way. Another professional issue we have dealt with is having a
very accurate object detection system. Our system should make almost
no mistake when guiding the user through their travel. Missing an
obstacle on a sidewalk that has the potential to hurt the user or labeling a
non-obstacle thing as an obstacle that would make the user make
unnecessary movements would both be unethical and unprofessional.
Similarly, in our navigation system, we should calculate the correct path
while making the path as efficient as possible.

In short, we aimed for our application to be the guiding eyes of our
visually impaired users. This bears a lot of ethical and professional
responsibility. Users must feel secure when using the live support system,
they should not be having to do any unnecessary actions while using the
application and lastly, they should not feel like they have visual
impairment while using our application. Ultimately, we have fulfilled these
ethical and professional responsibilities by following best-principle
guidelines in accessibility and security.

7.3. Judgements and Impacts to Various Contexts

Throughout the development and design life-cycle of OverSeer,
developers have made several judgements that had an impact to various
contexts:

Judgement
Description:

OverSeer must be accessible. OverSeer is
designed to help visually impaired users in their
daily life. Therefore, accessibility influenced our
various decisions.

Impact Level Impact Description

Impact in Global
Context 10/10

The accessibility will ensure
that users worldwide can

use OverSeer.

Impact in Economic
Context 3/10

The accessibility features
use Talkback feature in
Android systems. Users

that do not have an
Android phone would not
benefit from the services
provided by OverSeer.

Impact in
Environmental
Context

10/10
OverSeer provides voice
feedback to users. This

increases accessibility in a

43

way to warn users if there
are any obstacles in their
path. Thus, environmental
safety is increased for the

users.

Impact in Societal
Context 10/10

The aim of the application
is to ease the daily

challenges of visually
impaired users. With

accessibility, we can reach
visually impaired users to
help them join society.

Table 1. Accessibility Judgement.

Judgement
Description:

OverSer must be secure. There are volunteers
that can help the visually impaired users. There
can be bad-mannered volunteers. Moreover, both
users provide their data to our servers. Security
must be ensured. Therefore, security influenced
our decisions in various ways.

Impact Level Impact Description

Impact in Global
Context

10/10 OverSeer has to provide
data security and ensure

that visually impaired users
are protected from

ill-mannered volunteers.
Security would allow
OverSeer to provide

trustworthy services to
worldwide users.

Impact in Economic
Context

9/10 Since security is a key
objective of OverSeer, we

used reliable Cloud
providers and APIs which

have a certain cost. We had
to consider various options
to choose the best security
/ cost ratio efficient service.

Impact in
Environmental

1/10 Since we are using Cloud
providers and APIs,

44

Context although our
carbon-footprint is high, for
the scope of OverSeer, we
did not consider security on

an environmental
sustainability level.

Impact in Societal
Context

10/10 Users want secure
applications. When they
hear an app’s security is

breached and their data is
stolen, they will not trust

the application again. Thus,
we prioritized security in
OverSeer to have a good

impact on a societal level to
build trust.

Table 2. Security Judgement.

Judgement
Description:

OverSeer must be robust. If certain services
crush or when OverSeer does not provide the
service it promises when users need it, it will not
be successful. Therefore, robustness influenced
our decisions in distinct contexts.

Impact Level Impact Description

Impact in Global
Context

10/10 Without any robust
services, we cannot realize
OverSeer. To reach users

worldwide, we had to
consider robustness in a

global context when users
worldwide used our
services in different

conditions.

Impact in Economic
Context

8/10 To provide robust services,
we had to consider the

impact of our solution in an
economic context. Most
users may not have the
best Internet provider.

Moreover, their hardware
may be old. As a result,

45

when designing OverSeer
and making decisions, we

fairly considered this
context.

Impact in
Environmental
Context

6/10 Users worldwide live in
different environments. The

machine learning model
must detect obstacles

regardless of the
environment. Thus, to
provide robust obstacle

detection, we considered
this context.

Impact in Societal
Context

10/10 If OverSeer does not
provide reliable services,

the society in which
OverSeer operates will

reject it. Thus, we had to
consider societal context

when making decisions on
OverSeer.

Table 3. Robustness Judgement.

7.4 Teamwork Details

After we formed our group, each member had been assigned a role
on project management. According to these roles, each member had to be
effective at:

● Talha Şen: Arranging meetings depending on availability of each
member.

● Hakan Sivuk: Managing the project and checking on work done.

● Ahmet Berk Eren: Keeping a track of reports to work on.

● Cevat Aykan Sevinç: Communication with external actors.

● Yusuf Nevzat Şengün: Helping with the management of the project
and checking on work done.

This role distribution allowed us to conquer distinct requirements for
our group to sustain. However, this distribution does not imply that one
was not responsible for other aspects of the project. The assignment was
made to ensure that there would be always a member to perceive a

46

responsibility in depth. Every member can help other members and take
an active role for each responsibility. Essentially, this is what we have
accomplished while developing OverSeer as a group. This would be
elaborated on further in the following subsections.

A Google Drive folder that is shared for every member was created.
This way, every deliverable other than the base code could be shared
between members. This allowed us to access and work on the same report
files simultaneously while sharing diagram data such as Visual Paradigm
files. This made the process of delivering reports more efficient.

We decided to use Github for storing our code-base while managing
version control and have a sustainable development pipeline. We created
an organization to represent our project headquarters. In this base
headquarter we manage our website project and the design project. The
design project allows us to have a rich base of subsystems such as live
support, navigation support and object detection. We distributed these
subsystems per member for researching and development. To keep track
of work done, we agreed on two systems:

● Weekly Meetings:

To discuss our progress, we had weekly meetings using Zoom. Each
meeting would have a topic for the next week so that we could keep track
of our progress while building on top of it. In a way, we have followed a
Scrum methodology while working on OverSeer. At the end of each
meeting, developers were assigned tasks based on that week’s sprint.
During each meeting, when there are multiple available works, each work
is assigned a weight out of ten by every member. Next, the average
weight is calculated and the total weight of the works are determined.
Finally, every member is assigned a job and the total weights distributed
per member is equalized so that any member would not have an
overwhelming amount of work to deliver. This allowed us to optimize our
work done per member which improved our delivery rate.

● Github Projects:

Each member had an ongoing project. As a result, each project had
different requirements and different deliverables. To track every project
progress, we decided to use Github Projects. For each project, a
representative project topic would be opened on the OverSeer Github
repository. For each work to be done, a card was created and assigned to
the responsible member. Therefore, every delivery progress could be
transparently observed and if there was any problem regarding
performance, necessary actions could be decided on to ensure sustainable
project development. This transparency allowed us to further trust each
other. As a result, we become a solid team.

47

Our project required us to learn new technological stacks such as
React Native, Android Studio, YoloV5 and libraries for navigation, live
support. That is the reason why we worked in an Agile manner using
Scrum to understand each requirement and continuously build the
services. As a result, we created a system to ensure that every member
could properly contribute to the project while learning new technological
frames.

7.4.1 Contributing and Functioning Effectively on the Team

We believe the key aspect of every software project is the team
behind the curtains. We believe that we not only become a functional
team, but also a team that shares a culture of inclusion, collaboration and
trust. As a team, we have been working on the same projects for two
years. This is the reason why we collaborated on the senior design project
as the culture we shared is very important to us. Therefore, throughout
the life-cycle of OverSeer, each member effectively contributed and
functioned in the team in full transparency.

● Talha Şen

Talha, along with Hakan, was responsible for mainly in the
development machine learning model and arranging meetings. Talha
always did the best effort he could. Since he is working a part-time job 3
times a week, he successfully managed his time to keep up with an
overwhelming amount of tasks. He has an important role in developing
the necessary models that recognizes the potential dangers to the users.
He not only developed such a model but also deployed it.

While working on his tasks, Talha always shared his plans with his
teammates. He effectively versioned his source code to collaborate with
other developers. When other members needed help or there were
problems in the project, he always followed an approach that builds trust
in the team. By arranging regular meetings in a team, we were able to
catch up with each others’ work. Without Talha, we would not have been
able to develop the key components of OverSeer.

● Hakan Sivuk

Hakan is the founder of this project. He came up with OverSeer and
other members loved the idea. Therefore, Hakan had an important role in
contributing and functioning effectively on the team. Along with Talha, he
worked on developing the machine learning models and deploying them to
the cloud. He contributed effectively by designing the machine learning
models and customising them. Moreover, Hakan has successfully
motivated each team member to effectively contribute to the project. He
always listened to each member’s distress on any uncertainty. By

48

picturing a reliable project development pipeline, he made the team
overcome any uncertainty and effectively strengthen the trust between
the members.

Hakan works as a part time machine learning engineer at Migros
ecommerce. He successfully leveraged his knowledge to the OverSeer
project. He integrated the model on Amazon Sagemaker while designing
the overall machine learning pipeline with Talha Şen. Together, they
arranged meetings with the supervisor to criticize their progress and get
the best feedback on the model. By always looking out for his teammates,
Hakan created a work environment where each member can happily
contribute and function.

● Ahmet Berk Eren

Ahmet was responsible mainly for the live support service in
OverSeer. He researched, analyzed, and designed the necessary
subsystems for live stream. He found that the JitSi API can provide the
necessary requirements described for OverSeer. Moreover, he not only
implemented the live stream functionality in React Native, but also
re-implemented in Android Studio as the environment of the project
changed. Ahmet effectively communicated with the team while developing
the live support subsystem. He has been fully transparent on the work he
has accomplished.

Ahmet always attended meetings. Ahmet also followed the
deadlines for each deliverable for the project. As a result, we were able to
effectively plan our roadmap and sprints. He has always delivered quality
code. He did his best to contribute and function effectively for OverSeer
while working a part time job. Members consider themselves very lucky to
have such a motivated member who is independent and a self learner.

● Cevat Aykan Sevinç

Cevat was responsible mainly for developing the UI, accessibility
and core systems in OverSeer. Firstly, Cevat researched if OverSeer could
be controlled with voice only to ensure a smooth UX on accessibility.
However, he analyzed that such a system would not fit the scope of
OverSeer. Therefore, Cevat researched, analyzed and designed the
accessibility in OverSeer using accessible UI best-practises. Furthermore,
Cevat implemented a global event system which allowed many
independent systems in OverSeer to communicate while being decoupled.

Throughout the project, Cevat communicated with external actors
to arrange meetings or provide the necessary updates on the project. He
always tried to ensure the logistics were met in time. Next, Cevat also

49

helped with the deliverable reports. Thus, he effectively functioned and
contributed to OverSeer while working a part time job.

● Yusuf Nevzat Şengün

Yusuf was responsible mainly for developing the navigation service
in OverSeer. He researched, analyzed and designed how navigation could
be implemented in OverSeer. As a result, he integrated the MapBox API
which provides the navigation in OverSeer. He was fully transparent on
implementing the navigation functionality. He communicated, tested and
solved issues arising in navigation successfully.

Yusuf was also responsible for helping with the management of the
project. He effectively tracked the project roadmap, analyzed any risks
and contributed to the potential solutions in case of any issues arising in
the development pipeline. He has managed to accomplish his
responsibilities successfully while working a part time job. By having
amazing time management skills, he contributed and functioned
effectively in OverSeer.

7.4.2 Helping Creating a Collaborative and Inclusive Environment

Each member followed a strong understanding of egoless
programming [11]. Since we have been developing projects together for
two years, it has not been difficult for us to create such an environment.
Although there is a clear division of work among the group members, we
had a collaborative environment where people may contribute to other
tasks that are not assigned to them originally. For instance, Cevat helped
the machine learning team in terms of forming a custom dataset. Also,
Yusuf helped Ahmet Berk while he was trying to find a proper live support
API for the project. Apart from these, each member tried to contribute to
the report writing process as much as possible. This collaborative and
inclusive environment inside the group allowed us to deal with tasks
easier and optimized the project roadmap for the better.

● Talha Şen

Talha always included others in the discussions related to the
machine learning model. When Hakan and he needed samples for the
model, they allowed other members to label data in a collaborative
environment. Moreover, Talha never judged a member and always
listened to others respectfully in an inclusive manner. He always attended
meetings to collaborate with others on idea design & idea discussions.

● Hakan Sivuk

Hakan, the founder of the project, always ensured that the working
environment is collaborative and inclusive. He has always invited others to

50

join discussions on machine learning. He always shared their plans with
other members. He always listened to other members to solve any
problems and never judged a person. He effectively communicated his
envision for the project with other members to create a culture of
collaboration and inclusion.

● Ahmet Berk Eren

Ahmet always shared his problems arising in live stream and
allowed others to collaborate with him on solving these issues. By
combining his skills with other developers’ debugging skills, he created
robust systems. He shared his design and findings with other developers
consistently, allowing them to contribute to the design & implementation
process of the live support subsystem. He never judged a person and
discriminated against a member. He shares a great part in creating the
collaborative and inclusive culture in the project

● Cevat Aykan Sevinç

Cevat has always tried to inform others on his communications with
external actors. He has effectively communicated the required logistics by
sharing a culture of inclusion and collaboration. By allowing others to
share their ideas on logistics, he made sure that the end result does
satisfy each member, thus, building trust in the team. He always tried to
collaborate with other developers and help them solve problems
encountered during the development of OverSeer.

● Yusuf Nevzat Şengün

Yusuf, while working on navigation systems, always included others
for collaboration. He helped create such an environment by allowing
others to join the design decisions made on the navigation system. By
sharing his progress in a transparent manner, Yusuf allowed other
developers to be involved in the navigation subsystem. This allowed the
navigation system to be free of bugs while division of tasks for
optimization of the work done. He had an important role in creating the
culture of collaboration and inclusion in OverSeer.

7.4.3 Taking Lead Role and Sharing Leadership on The Team

Normally, the formal leader of the project is Hakan. However,
taking the lead role doesn’t mean handling all the tasks or making
decisions by oneself. Instead of it, we shared leadership roles on the team
for different parts of the project. For instance, Ahmet is taking a lead role
for reports and deadlines. He prepares reports, divides the tasks when it is
necessary, and checks the process. But each member contributes to
reports equally. Also, as it was mentioned above, different tasks have

51

different leaders. For instance, Talha is responsible for the integration of
machine learning models into the application. He did the research and
prepared the initial design. However, he also asked the opinions of the
group about some parts and also assigned some tasks to the members. In
that regard, taking the lead role is a way of focusing on different parts of
the project better and directing the group more consciously. This strategy
allowed us to divide and conquer various problems arising in the
development of OverSeer.

● Talha Şen

Lead the team in developing and integrating machine learning
models along with Hakan while focusing on different aspects. He
effectively planned the tasks and distributed certain work to team
members. Moreover, he arranged critical team meetings for various
discussions.

● Hakan Sivuk

Lead the team in developing and integrating machine learning
models along with Talha while focusing on different aspects. Since Hakan
is also the founder of the project, he closely tracked each progress done
by using a transparent project roadmap.

● Ahmet Berk Eren

Lead the team in developing and integrating live support
functionality while keeping track of deliverables. He designed the live
support subsystem and divided tasks between team members. He also
helped in the design process of the navigation subsystem.

● Cevat Aykan Sevinç

Lead the team in developing and integrating accessibility and core
systems used by every subsystem in OverSeer. He also managed logistics
in a way to meet certain quality assurance by the deadlines. He
occasionally helped the design and implementation in other subsystems in
OverSeer. He also took leadership on communicating with external actors.

● Yusuf Nevzat Şengün

Lead the team in developing and integrating live support
functionality while keeping track of deliverables. He designed the live
support subsystem and divided tasks between team members. He also
helped in the design process of the navigation subsystem.

52

7.4.4 Meeting Objectives

Here is the updated work package table defined in our analysis
report:

WP# Work package title Leader Members involved

WP1 Data Science - Model Training, Object
Detection

Hakan Sivuk Talha Şen

WP2 Android Studio - Navigation Yusuf Nevzat
Şengün

Ahmet Berk Eren, Cevat Aykan Sevinç

WP3 Accessibility, UI Cevat Aykan Sevinç Ahmet Berk Eren, Yusuf Nevzat Şengün

WP4 Logistics Ahmet Berk Eren Hakan Sivuk, Talha Şen, Yusuf Nevzat
Şengün, Cevat Aykan Sevinç

WP5 Android Studio - Live Support Ahmet Berk Eren Yusuf Nevzat Şengün

WP6 Data Science - Model Format
Transformation and Deployment

Talha Şen Hakan Sivuk, Yusuf Nevzat Şengün

Table 3: List of work packages

● WP1 Data Science - Model Training, Object Detection

The objective of this work package was to develop and train a
model that can detect obstacles and traffic lights for the visually impaired
person. According to the analysis report, two deliverables were required:
a custom dataset and the trained Yolov5 model. Both of these deliverables
have been met and deployed. Custom dataset was created using a team
effort. The model was trained by Hakan and Talha. While they progressed
on this work package, it was realized that there were new requirements to
overcome. This meant that the deadline of the deliverable would be
shifted for two months. Nevertheless, this work package is fully realized
with updated functional requirements, complying to the non-functional
requirements.

● WP2 Android Studio - Navigation

The objective of this work package was to provide navigation
support for guiding users. Users had to be able to set their destination and
get step by step voice commands until they arrived at their destination.

53

This work package had three deliverables: navigation system
implemented in React Native, a backup mechanism, voice feedback during
the navigation. These objectives have been met but they have changed
according to our design. Firstly, the navigation system is implemented in
Android Studio as the development environment has been changed.
Secondly, a backup system has not been implemented yet. It will be
added in the future. Thirdly, the navigation system regularly updates the
user on their route. As a result, the objectives, excluding a backup
system, have been met while dealing with change.

● WP3 Accessibility, UI

The original objective of this work package was to include voice
recognition to the app. However, as the requirements of this system were
researched, it was understood that such a system required a complex
technical investment that over-scoped OverSeer. As a result, the
objectives had been changed to implement a fully accessible UI according
to the accessibility best-principles. This work package is fully realized and
the updated objectives have been met.

● WP4 Logistics

Originally, this work package only included reports. However, the
logistics had to include new deliverables. As a result, each deliverable is
boxed under logistics. Our senior design project required several
deliverable reports documenting the life-cycle. These reports include:
project specification report, analysis report, high-level design report,
low-level design report, final report, user manual, a poster, a demo video,
three presentations to the expert and jury members. Therefore, the
logistics to deliver such work has been ensured and each work is delivered
on time. As a result, the objectives of the logistics have been met before
the deadlines successfully.

● WP5 Android Studio - Live Support

The objectives of this work package include implementing a
streaming service where a volunteer can connect to the front camera of
the visually impaired person. This work package had two deliverables.
First is a system that connects a volunteer and a visually impaired user,
regardless of whether they are friends or not. Secondly, the report system
that bans bad mannered volunteers. While the first deliverable is met as
an objective, the second deliverable is left for future work due to the time
constraints we faced in the development of OverSeer.

● WP6 Data Science - Model Format Transformation and
Deployment

54

The original objective of this work package included transforming
the trained model to Tensorflow Lite so that it can be used efficiently in
the application. However, as the platform was changed to Android Studio,
it was no longer needed. Thus, the requirements changed in a way that
the model was deployed using Amazon Sagemaker. Therefore, the
updated objectives of this work package is fully met while delivering
deployed models.

7.5 New Knowledge Acquired and Applied

For our object detection model, we decided to use yolov5 and we
did not have any prior knowledge about it before. Yolo (You Only Look
Once) is an open-source real-time object detection system. We needed to
detect objects throughout the user's navigation accurately and fast, and
this system fit our requirement. The strategy we planned to apply while
learning this was that we were preparing many training datasets to run on
this model. While doing this, we planned to change hyperparameters on
the model to see if our results improve. When we found a model that
satisfied our object detection requirements, we planned to use it in our
final application. This allowed us to train a robust machine learning model
although we had not had any experience before.

For the application, we decided to use React Native as it was cross
platform. Moreover, it was supported by rich libraries of machine learning,
navigation and cloud services. As a result, we learnt React Native.
However, after the progress demo, we realized that React Native would
not provide the best environment when the model would be deployed.
This made us change our environment to Android Studio. Consequently,
we had to start over. However, we had a strong design and good
understanding of the requirements necessary to realize OverSeer. Thus,
we quickly learnt Android Studio to leverage our previous experience from
React Native. We know that most are not capable of doing such a radical
and risky choice in the middle of the semester. However, our adaptation
to change by quickly determining problems without them being arising led
us to self learn required solutions. Certainly, Bilkent has an important role
in this as all of us are senior computer science students who have
acquired a set of soft and hard skills throughout its academic
environment.

Developers had not had any experience on accessibility before.
OverSeer allowed them to learn the daily challenges of the visually
impaired people. Thus, developers researched contemporary approaches
on accessibility for the visually impaired. Next, developers implemented
accessibility best-principles to OverSeer to make it fully accessible.

55

For the backend part of the project, we decided to use Node.js
since it had a good compatibility with React Native, and also it had a rich
library and community. However, we decided to use Sagemaker API that
uses Python3 to implement backend. To accomplish this, developers first
read the documentation of Amazon SageMaker. Next, they deployed their
machine learning model to it. Finally, developers learnt how to
communicate using the API. Step by step, using a top-down approach, we
divided and conquered most of the problems we had not had any
experience before by using this strategy. Documentations were one of the
biggest learning sources we benefited from.

To integrate a database to our application, we evaluated our
choices after we switched to the Android Studio. We found that Firebase
Database could be nicely integrated with Android Studio as both are
powered by Google. Thus, we created a database schema to support
OverSeer users while they are using the application. We applied the skills
we gained in CS353 as the developers were taking this course at the same
time they started developing OverSeer.

Navigation functionality was possible by using MapBox API.
Developers scanned existing libraries. Since there were multiple ones, a
chart was made to display the advantages and disadvantages each API
provided. As a result, MapBox was seen as a better fit to the requirements
needed in OverSeer. Next, developers studied its documentation to
quickly prototype it. After this, developers were familiar with the API so
that they implemented the required functionalities. Moreover, the live
support functionality shares a very similar story. In its case, the API is
Jitsi and developers simultaneously studied its documentation while
studying MapBox. As a result, both APIs were understood in depth to be
customized as needed in OverSeer.

8. Conclusion and Future Work

OverSeer is a project that can be extended. This makes the future
work an important aspect of its life-cycle. Firstly, as described in
maintenance, our future work consists of building a DevOps pipeline to
provide continuous testing. This would allow us to deal with change by
ensuring redundancy tests on the legacy code. Moreover, there are some
objectives in work packages that have been omitted. The future work
involves implementing such objectives to increase the functionality of
OverSeer. Moreover, we plan to continuously improve the machine
learning models and the pipeline. We have an architecture that is open to
extension and easy to maintain. We believe that this creates an advantage
for the future work planned for OverSeer.

56

Developing OverSeer was both fun and challenging. In the limited
timespan we had, we have suffered important problems. These problems
include external factors such as the other course-loads we had, keeping
up with our part time jobs, dealing with the inability to socialize. However,
OverSeer allowed us to become more than a team, members sacrificing
themselves to help others, to overcome such difficulties while sharing a
culture of collaboration and inclusion. We consider ourselves very lucky to
find each other, since as a team, we learnt the most from each other
while having exceptional time-management skills. The OverSeer project
allowed us to be greater, implement the theoretical knowledge we have
accumulated over the years, and made our group a family. We are proud
of the work done.

9. Glossary

● Android Studio: A framework to create Android applications.
● Firebase: Database services provided by Google.
● JitSi: An API that allows live video streaming.
● JUnit: Test framework available in Java.
● MapBox: An API that allows real time navigation.
● Talkback: Accessibility settings that can be toggled on in Android

systems to read out application UI.
● Sagemaker API: Amazon Cloud’s machine learning platform.

10. References

[1] “Build More Accessible Apps” developer.android, [Online]. Available:
https://developer.android.com/guide/topics/ui/accessibility. [Accessed:
25.04.2021].

[2] “What are Standards,” library.rose, Feb. 01, 2021. [Online]. Available:
https://library.rose-hulman.edu/c.php?g=104543&p=888557. [Accessed:
08.02.2021].

[3] “ISO Standards,” iso, [Online]. Available:
https://www.iso.org/standards-catalogue/browse-by-ics.html. [Accessed:
08.02.2021].

[4] “Camera2,” developer.android, [Online]. Available:
https://developer.android.com/reference/android/hardware/camera2/pack
age-summary. [Accessed: 08.02.2021].

[5] S. Pittet, “The Different Types of Software Testing”, atlassian,
[Online]. Available:
https://www.atlassian.com/continuous-delivery/software-testing/types-of-
software-testing. [Accessed: 25.04.2021].

57

https://developer.android.com/guide/topics/ui/accessibility
https://library.rose-hulman.edu/c.php?g=104543&p=888557
https://www.iso.org/standards-catalogue/browse-by-ics.html
https://developer.android.com/reference/android/hardware/camera2/package-summary
https://developer.android.com/reference/android/hardware/camera2/package-summary
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing

[6] “Accessibility Principles”, developer.android, [Online]. Available:
https://developer.android.com/guide/topics/ui/accessibility/principles.
[Accessed: 25.04.2021].

[7] “Application Performance MAnagement”,
applicationperformancemanagement, [Online]. Available:
https://www.applicationperformancemanagement.org/software/monitorin
g-software/. [Accessed: 25.04.2021].

[8] G. A. Larsen, “Top Ten Mistakes When Building and Maintaining a
Database”, databasejournal, Oct. 13, 2010. [Online]. Available:
https://www.databasejournal.com/features/mssql/article.php/3906986/To
p-10-Mistakes-When-Building-and-Maintaining-a-Database.htm.
[Accessed: 25.04.2021].

[9] B. Dobran, “Top Fifteen Point Server Maintanence Checklist IT Pros
Depend On”, phoenixnap, Mar. 21, 2019. [Online]. Available:
https://phoenixnap.com/blog/server-maintenance-checklist. [Accessed:
25.04.2021].

[10] Orchestrate Technologies, “Application Maintanence and Support,
Best Practises” medium, Nov. 30, 2015. [Online]. Available:
https://medium.com/@Orchestrate/application-maintenance-and-support-
best-practices-bef7bad780cc. [Accessed: 25.04.2021].

[11] J. Atwood, “The Ten Commandments of Egoless Programming”,
codinghorror, [Online]. Available:
https://blog.codinghorror.com/the-ten-commandments-of-egoless-progra
mming/.

[12] Object-Oriented Software Engineering, Using UML, Patterns, and
Java, 2nd Edition, by Bernd Bruegge and Allen H. Dutoit, Prentice-Hall,
2004, ISBN: 0-13-047110-0.

58

https://developer.android.com/guide/topics/ui/accessibility/principles
https://www.applicationperformancemanagement.org/software/monitoring-software/
https://www.applicationperformancemanagement.org/software/monitoring-software/
https://www.databasejournal.com/features/mssql/article.php/3906986/Top-10-Mistakes-When-Building-and-Maintaining-a-Database.htm
https://www.databasejournal.com/features/mssql/article.php/3906986/Top-10-Mistakes-When-Building-and-Maintaining-a-Database.htm
https://phoenixnap.com/blog/server-maintenance-checklist
https://medium.com/@Orchestrate/application-maintenance-and-support-best-practices-bef7bad780cc
https://medium.com/@Orchestrate/application-maintenance-and-support-best-practices-bef7bad780cc
https://blog.codinghorror.com/the-ten-commandments-of-egoless-programming/
https://blog.codinghorror.com/the-ten-commandments-of-egoless-programming/

