

Bilkent University

Senior Design Project

OverSeer

High-Level Design Report

Talha Şen
Hakan Sivuk

Ahmet Berk Eren
Cevat Aykan Sevinç

Yusuf Nevzat Şengün

Supervisor: Ayşegül Dündar

Jury Members: Çiğdem Demir Gündüz, Can Alkan

This report is submitted to the Department of Computer Engineering of Bilkent University

in partial fulfillment of the requirements of the Senior Design Project course CS491/2.

Contents

1 Introduction 4

1.1 Purpose of the System 4

1.2 Design Goals 5

1.2.1 Correct Functionality (Robustness) 5

1.2.2 Usability / User Experience / Accessibility 5

1.2.3 Efficiency 5

1.2.6 Maintainability 5

1.2.7 Performance 6

1.3 Definitions, Acronyms, and Abbreviations 6

2 Proposed software architecture 6

2.1 Overview 6

2.2 Subsystem decomposition 7

2.3 Hardware/software mapping 8

2.4 Persistent data management 9

2.5 Access control and security 10

2.6 Global software control 11

2.7 Boundary conditions 11

3 Subsystem services 13

3.1 Live Support Subsystem Service 13

3.1.1 Live Support Manager Subsystem Service 13

3.1.2 User Subsystem Service 14

3.1.3 User Interface Subsystem Service 14

3.1.4 Response Subsystem Service 14

3.1.5 Error Subsystem Service 15

3.1.6 Notification & Report Subsystem Service 15

3.2 Detection Support Subsystem Service 16

3.2.1 Detection Subsystem Service 16

3.2.2 Image Subsystem Service 17

3.2.3 Warning Subsystem Service 17

4 Consideration of Various Factors in Engineering Design 17

5 Teamwork Details 18

5.1 Contributing and functioning effectively on the team 18

2

5.2 Helping to create a collaborative and inclusive environment 19

5.3 Taking lead role and sharing leadership on the team 20

6 References 20

3

High-Level Design Report
OverSeer

1 Introduction

OverSeer is a mobile application that aims to remove barriers for

visually impaired people. OverSeer navigates people for the places they

want to go and warns them towards obstacles they face on their paths.

Next, OverSeer provides live support to help them with any problem. They

can ask for price information at a supermarket or they can just want a

volunteer to show the correct location of an object with the help of live

support.

In this report, having described the problem, we talk about our

proposed system by describing the overview of the project, its function,

non-functional and pseudo requirements, and its system models. Then we

talk about other analysis elements such as various factors to our project,

risks and alternatives to our project, our project plan, how we plan our

team-work, our ethical and professional responsibilities and new

knowledge and strategies we learned.

1.1 Purpose of the System

Our systems aim to help visually impaired users through their

navigation outside. We believe this is a big problem for visually impaired

people. Through their navigation, they need to avoid obstacles, carefully

cross crossroads, know the path to their destination, etc. The common

tool visually impaired people use is a white cane, and that does not fully

help our target audience through their travel. We think this is a serious

topic that we can produce a solution on.

Our application will provide ways to help visually impaired people in

their navigation. It will include an obstacle detection system that will

protect the user from putting themselves in danger in their travel. It will

use a navigation system focused on voice commands that will guide the

user through the navigation and it will have a live stream service that will

allow volunteers who can help the visually impaired users if they need

urgent help. We aim to provide multiple and different ways to help visually

impaired people with this problem.

People with health problems have many different issues in many

aspects of their lives, and it is important to help them in ways that will

make them feel as comfortable as possible. This was one of the

motivations for the purpose of our system. It is also the reason why we

are trying to provide different subsystems in our system that can help

visually impaired people with their navigation. It is also important to

provide several solutions for the users where they can select the one most

suitable for them.

4

1.2 Design Goals

1.2.1 Correct Functionality (Robustness)

The application will be used by mainly visually impaired. As a result,
the functionalities we provide must be robust. The voice command
functionality must correctly identify user commands and respond accordingly.
It would be frustrating for the users if the application repeatedly asked the
user to repeat their command. Moreover, it would be more dangerous if the
application falsely identified the request and directed the user. Next, this
applies to our machine learning model as well. The model must be robust in
determining obstacles.

1.2.2 Usability / User Experience / Accessibility

Our application must be easy to use for the visually impaired. As a UI is
meaningless, we have come up with voice command functionality. We
decided to use a voice command instead of the screen keyboard for the
visually impaired as we believe it increases the usability of the application.
The user does not have to hold the device to communicate with it. If users
cannot access our application, OverSeer would simply fail.

1.2.3 Efficiency

The application must be developed while aiming for efficiency. This is
important because the machine learning model and the application must be
responsive. When an input is given by the user, they should not wait for the
response. This is a must for the machine learning model. While users are
navigating to locations, the machine learning model must detect obstacles
and report them in time. If the model is not responsive, this would decrease
the safety of the OverSeer.

1.2.6 Maintainability

The system must be maintainable. It is going to be used by users in the
following years. Each service needs maintenance to have a consistent correct
functionality and improved service quality. As a result, we aim for a
state-patterned system. Each state would be independent of other states. As
a result, if a failure happens in one system, then other systems would be
unaffected. This would allow developers to maintain OverSeer as the changes
made in one state would not be visible to other states. This state-pattern
would also comply with the correct functionality design goal.

5

1.2.7 Performance

OverSeer will rely on network connectivity on some functionalities such
as location suggestion, improved navigation quality, and live support. As a
result, network performance is important for OverSeer.

1.3 Definitions, Acronyms, and Abbreviations

● Jitsi: Jitsi is a Web-RTC application library. It also provides a video
conferencing service that can be installed into the application main
server. Jitsi connects users to each other with this conferencing server.
The users can access this server via Jitsi Socket.

● YOLOv5: YOLO(You Only Look Once) is a famous object detection
model to determine the location of certain objects and their classes.
After it was first released in 2016, it is frequently used for real object
detection tasks and the most current version is the v5. We finetuned
the pre-trained YOLOv5 weights with our custom dataset.

● Voice: Voice is a react-native library which recognizes user voice input.
We use this library to get user input. Currently, we statically analyze
the input. We aim to also add context-based analyzation to user input
to increase correct identification.

● Tts: Tts is a react native library that is used to give voice feedback
back to users. We use this library to give updates to users on their
requests.

2 Proposed software architecture

2.1 Overview

For the visually impaired people who will use our application,

OverSeer will mainly work through voice commands. The application will

also have a user interface, but usually, this will be used by people who are

helping the visually impaired user either manually or through live

streaming. The user can start OverSeer’s navigation as it's one of the

main functionalities. The user can mark a destination with voice, and the

navigation system will make a path to that destination and it will guide the

user through that path with voice outputs. Through the navigation, an

object detection system will work in parallel. This system will detect

obstacles through the travel and it will warn the user if these obstacles

become a threat for the user. For example, when trying to cross a road,

the object detection system will detect the state of the traffic light, and

6

when it lights green, it will tell the user to cross the road. Alongside this,

the detection system will also try to detect fast-approaching cars to warn

the user. This will generally be how the navigation system will work for a

visually impaired user.

Other than this, the user can also ask other people for help. The

application will have a live streaming service that will allow other people

to see the environment of the visually impaired user. They will guide the

visually impaired user through their navigation system if the user sees

that help necessary. All the users will sign to the application with their

phone number, and they will choose if they are visually impaired, meaning

they will use the application for navigation or if they are voluntary helpers,

meaning they will use the application to help the visually impaired users

through live streaming.

2.2 Subsystem decomposition

Fig 1. Subsystem Decomposition Diagram

● UIHandler: This subsystem is for our UI. Although the application
would be used mainly by the visually impaired, there could be
volunteers that want to help the visually impaired. As a result, this
subsystem would be responsible for handling the UI for the volunteers.

● EventFlow: OverSeer would be event-driven. This would allow the
systems to be independent. EventFlow will handle the event flow in the
system while managing subscribers. When an event is raised, event
flow will collect this event and notify any listeners.

● VoiceIOHandler: This subsystem will be responsible for collecting user
voice input and sending voice output. This subsystem would enable
OverSeer to effectively communicate with the visually impaired user.

7

● Support: Main functionalities of our application will be provided by the
support subsystem. Users can choose which support they want to use
and each support can handle their request using a state-driven
approach.

● Server/Server Communication: This subsystem is responsible for
handling connections between clients and the server. This subsystem
would complement other support systems when they need network
services.

● UserHandler: This subsystem will handle any user-specific task such
as login, register, and persistent user data, reporting hackers.

2.3 Hardware/software mapping

● Detection Support

Hardware/software mapping of the detection support is simple. There is

only the client machine and the detection related software operations are
performed on the user's hardware system. We use the storage of the user
phone for storing model weights.

Fig 2. Deployment Diagram for Detection Support

● Navigation Support

Hardware/software mapping of the navigation support is simple. There

is only the client machine and the navigation-related software operations
are performed on the user's phone hardware system. We use the location
services of the client machine to find the location.

8

Fig 3. Deployment Diagram for Navigation Support

● Live Support

Fig 4. Deployment Diagram for Live Support

Hardware/Software mapping for live support consists of a server and 2
clients which are a visually impaired user and a volunteer. The server
operates on an online host and the user interface for each user
operates on the client smartphone hardware as a software. The server
provides a visual and audio connection between users. The server also
stores the IDs of the users.

2.4 Persistent data management

Images will be kept in the local hard disk of the users. This is because
we believe it is unnecessary to load images from an online source because of

9

performance. If images are kept in local hardware, then this problem is
solved.

In addition to this, we also have a database that holds the userIDs and

passwords of the registered players. This is because a user must register an
account one time and he/she must use that account to login every other time.
If we made the user register an account every time they wanted to use
OverSeer, it would reduce the usability and performance. OverSeer has a
server that manages all the data related to the other accounts. It is persistent
and independent of the application from a local environment.

Apart from these, trained machine learning weights must be stored,
because we need them for obstacle and traffic light detection. Since it is a
real-time object detection task and it should be fast for producing sufficiently
early warning, performance is crucial for detection systems. Therefore, these
weights are kept in the local hardware of the user.

2.5 Access control and security

OverSeer has an accounting system with unique userIDs and
passwords. These passwords are kept as hashed inside the main server to
avoid account theft. In the register, the phone number of the user is used as a
userID. Therefore, if an account is banned from the system the owner of the
account can not register again with the same phone. This aims to avoid
harmful users to use OverSeer. Consequently, if a user got banned from the
system, then they can not reaccess it.

In live support, the volunteer can access only the camera and
microphone data of the visually impaired user. On the other hand, visually
impaired users can access only the microphone data of the volunteer during
the call.

In our obstacle detection system, there are not any different users.
Because of this, there is not any special access control for users. As the
system is working in a local environment, there are not any security concerns
for our obstacle detection system.

In the voice command system, the user can access only OverSeer
functionalities. It can not be used for other applications inside the smartphone.

10

2.6 Global software control

Since the server provides services to all users, it is possible to

face race conditions when different users try to use the same data.

To prevent any problem, the server should be event-driven. It

should handle its tasks in an event-driven way where services are

executed when the related event is called. In addition to preventing

race conditions, event-driven programming is an important way of

providing quick and accurate responses to the client. Event-driven

programming is supported by many programming languages, and it

should be used especially for the communication between server

and client.

The local software in the client would be state-driven. This is

because supporting voice commands with the functionalities of the

application is easier. Each state would be responsible for receiving

and responding to voice commands regarding their state-specific

tasks. This way, the software is easier to control and debug. Each

state can handle its exceptions and boundary conditions.

2.7 Boundary conditions

● Initialization

When users want to use the application for the first time, they

are navigated to the login screen where they can either log in to or
register an account. After successful authentication, the user is
navigated to the main screen where one can start navigation
support, give voice commands, request help from a volunteer
(visually impaired user’s point of view). If they request help, the
server sends notifications to available volunteers. When one of
them accepts the request, the server initializes the video call. If the
user wants to use the navigation support, the target address is
asked by the application and then the user is asked to place the
phone properly (for obstacle detection). After the user enters the
information, the route is determined and the navigation service
starts.

Also, we should initialize the server. Initialization of the server
includes initializing sockets and connection ports, initializing
database connection, creating necessary objects, and calls proper
listening methods for the server & client communication.

11

● Termination

When the live support service is terminated accidentally (such
as internet connection loss), the user waits for a while. If they
cannot or do not reconnect, the video call is terminated by the
server.

● Failure

As correct functionality is one of the most important design goals

for us, our system will have a strict event flow to force users to
follow the expected events. User inputs will be handled as stated in
the correct functionality design goal. The application will not
respond to any input other than defined user functionalities.

User authentication failures can happen if the user either enters
the wrong username-password combination or if he tries to register
an account with a username that already exists in the database. If
the application cannot find a volunteer for the visually impaired
user, the process must be terminated. Most importantly network
failures can happen and any one of the users can lose connection
to the internet at any point. In the case of live support, the video call
must be terminated and everyone should be directed to the proper
screen.

Also, since the server should run always, it must be robust in
terms of failures. It should have a proper mechanism for handling
exceptions and boundary cases. As it should handle these
exceptions, it should also send proper error messages to the client
to inform the user. For implementing this mechanism, different error
and response models will be implemented.

12

3 Subsystem services

3.1 Live Support Subsystem Service

Fig 5. Live Support Subsystem Service

3.1.1 Live Support Manager Subsystem Service

Fig 6. Live Support Manager Subsystem Service

LiveSupportManager subsystem provides a service to manage all the
communication between the server and the client. It listens to requests done by the
server or done by the app.

13

3.1.2 User Subsystem Service

Fig 7. User Subsystem Service

User subsystem provides a service to manage all the requests done by the
user to the server and configure the UI.

3.1.3 User Interface Subsystem Service

Fig 8. User Interface Subsystem Service

User interface subsystem provides a service to handle the data from the
server and make changes according to the data.

3.1.4 Response Subsystem Service

Fig 9. Response Subsystem Service

14

Response subsystem provides a service to manage the type of response
messages happening in between the users and server.

3.1.5 Error Subsystem Service

Fig 10. Error Subsystem Service

Error subsystem provides a service to handle all the exceptions or
errors happening during the application. It provides a safe and robust
environment in the online call.

3.1.6 Notification & Report Subsystem Service

Fig 11. Notification & Report Subsystem Service

Notification & report subsystem provides a service to handle the
notifications before the call and report the volunteer after the call.

15

3.2 Detection Support Subsystem Service

Fig 12. Detection Support Subsystem Service

3.2.1 Detection Subsystem Service

Fig 13. Detection Subsystem Service

Detection support subsystem provides a service to detect the obstacle and
traffic lights on the route. Detection is performed by using fine-tuned YOLOv5

16

models. It also uses Image and Warning subsystem services to get the images and
produce outputs according to the result of the detection operation.

3.2.2 Image Subsystem Service

Fig 14. Image Subsystem Service

Image subsystem provides a service to capture images from the route by
using the phone camera and process these images for the detection models.

3.2.3 Warning Subsystem Service

Fig 15. Warning Subsystem Service

Warning subsystem provides a service to produce instructions to the visually
impaired user when it is necessary according to the detection support subsystem.
This service includes determining the script of the voice output, decibel values for the
right and left headphones, etc.

4 Consideration of Various Factors in Engineering Design

There were various factors we have considered during the design
phases. Each of them was important for getting a better product and also
necessary for being useful to humanity.

17

● Human factors: Although we deal with many technical issues
throughout the project, this application will be used by people.
Therefore, we should adopt an approach by considering human
factors. For instance, visually impaired users can get recommendations
from the Overseer for specific places such as restaurants, cafes,
markets. Normally, this is not included in our core functionalities but
when human factors are considered, we should also focus on how we
can make users’ lives easier in different ways.

● Safety factors: Overseer has emerged as an application that aims to
make visually impaired people less dependent on their sticks and
overcome obstacles in front of them. In the best case, it is an important
advantage for a user, however, in the worst case, it may cause some
dangerous situations. The system has failure possibilities such as not
being able to detect dangerous obstacles and objects such as cars, or
detecting an object which is not an obstacle. We should minimize both
errors but preventing the first situation is more important because it can
cause serious harm for the users. Therefore, when we make
experiments with the models, in addition to the precision metric, we
should focus more on the recall metric.

● Security factors: Especially, the live support feature of the application
is open to abuse. People with malicious intent can misuse this
functionality. Therefore, to prevent this security problem, a user's
phone number is required to be able to register and we will have a
reporting system where people with abusive attitudes can be reported.
As a result of this report process, the reported user is investigated and
forbidden from the application with their phone number.

5 Teamwork Details

5.1 Contributing and functioning effectively on the team

Overseer consists of different functionalities such as live support,
detection operations, navigation support, and voice input/output related
operations. Therefore, we could make a proper division of tasks among group
members as it is explained below. Besides, each member participated in
meetings regularly and contributed to report writing, software design process,
brainstorming equally.

● Hakan Sivük & Talha Şen: Hakan and Talha are mainly responsible
for training machine learning models and integrating them into the
application. A research was made about the machine learning models
we can use for obstacle and traffic light detection tasks. After the
YOLOv5 model was chosen, datasets were found for traffic lights
images and object images which are determined as obstacles in the

18

project. Finally, detection models are trained by using this custom
dataset and pre-trained YOLOv5 model weights.

● Yusuf Nevzat Şengün: Yusuf is mainly responsible for finding
navigation services that are suitable for the project and integrating this
service into the application. Firstly, a research was made for different
available navigation services. Different options were compared in terms
of their functionalities, performances, and costs. As a result of this
comparison, MapBox API was chosen and the implementation process
for integrating this API into the project started. Apart from these, server
and client designs were made. Finally, the implementation process
started for the client-side.

● Cevat Aykan Sevinç: Cevat is mainly responsible for implementing
voice-related systems which are voice recognition and voice command.
Firstly, a research was made for voice recognition APIs that are
available. As a result of this research, one of these APIs was integrated
into the project and the application has a basic voice recognition
system that can recognize some common sentences like yes, no, start
navigation, start live support, etc. Apart from these, server and client
designs were made. Finally, the implementation process started for the
server-side.

● Ahmet Berk Eren: Ahmet is mainly responsible for the live support
system. Firstly, different video call APIs were found and Jitsi was
selected among them for the project. Apart from these, server and
client designs were made. Finally, the implementation process started
for the server-side.

5.2 Helping to create a collaborative and inclusive environment

Although there is a clear division of work among the group members,
we have a collaborative environment where people may contribute to other
tasks that are not assigned to them originally. For instance, Cevat helped the
machine learning team in terms of forming a custom dataset. Also, Yusuf
helped Ahmet Berk while he was trying to find a proper live support API for
the project. Apart from these, each member tried to contribute to the report
writing process as much as possible. This collaborative and inclusive
environment inside the group makes tasks easier and makes the project
better.

19

5.3 Taking lead role and sharing leadership on the team

Normally, the formal leader of the project is Hakan. However, taking
the lead role doesn’t mean handling all the tasks or making decisions by
oneself. Instead of it, we share leadership roles on the team for different parts
of the project. For instance, Ahmet is taking a lead role for reports and
deadlines. He prepares reports, divides the tasks when it is necessary, and
checks the process. But each member contributes to reports equally. Also, as
it was mentioned above, different tasks have different leaders. For instance,
Talha is responsible for the integration of machine learning models into the
application. He did the research and prepared the initial design. However, he
also asked the opinions of the group about some parts and also assigned
some tasks to the members. In that regard, taking the lead role is a way of
focusing on different parts of the project better and directing the group more
consciously.

6 References

[1] Object-Oriented Software Engineering, Using UML, Patterns, and Java, 2nd Edition, by Bernd Bruegge and Allen
H. Dutoit, Prentice-Hall, 2004, ISBN: 0-13-047110-0.

20

