

Bilkent University

Senior Design Project

OverSeer

Low-Level Design Report

Talha Şen

Hakan Sivuk

Ahmet Berk Eren

Cevat Aykan Sevinç

Yusuf Nevzat Şengün

Supervisor: Ayşegül Dündar

This report is submitted to the Department of Computer Engineering of Bilkent University in partial

fulfillment of the requirements of the Senior Design Project course CS491/2.

Contents

1 Introduction 3

1.1 Object Design Trade-Offs 3

1.2 Interface Documentation Guideline 4

1.3 Engineering Standards 5

1.4 Definitions, Acronyms, and Abbreviations 5

2 Packages 6

2.1 Internal Packages 6

2.1.1 Camera2 6

2.1.2 Android.Speech.TTS 7

2.2 External Packages 7

2.2.1 Pytorch 7

2.2.2 OpenCV 7

2.2.3 Mapbox.Directions 7

2.2.4 Mapbox.MapMatching 8

2.2.5 Mapbox.Geocoding 8

2.2.6 Mapbox.VectorTiles 8

3 Class Interfaces 9

3.1 Live Support Subsystem Service 9

3.1.1 Live Support Manager Subsystem Service 9

3.1.2 User Subsystem Service 11

3.1.3 Error Subsystem Service 12

3.1.4 Notification & Report Subsystem Service 13

3.2 Detection Support Subsystem Service 14

3.2.1 Camera Subsystem 15

3.2.2 Detection Subsystem 17

3.3 EventFlow Subsystem 20

3.4 Command Center Subsystem 22

3.5 Feedback Subsystem 24

3.6 UI Subsystem 25

3.7 Navigation Subsystem 28

4 References 32

2

Low-Level Design Report

OverSeer

1 Introduction

OverSeer is a mobile application that aims to remove barriers

for visually impaired people. OverSeer navigates people for the

places they want to go and warns them towards obstacles they face

on their paths. Next, OverSeer provides live support to help them

with any problem. They can ask for price information at a

supermarket or they can just want a volunteer to show the correct

location of an object with the help of live support.

In this report, having described the problem, we talk about

our proposed system by describing the design trade-offs that affect

the decisions, documentation, and engineering standards used for

the project. Then, we give a detailed description of the low level

design that includes packages and class interfaces along with the

design patterns we use.

1.1 Object Design Trade-Offs

Our software architecture will be monolithic event-driven

architecture. This is because monolithic architecture is simple to

understand and implement while events enable developers to

decouple subsystems. To control and distribute events, there will be

an event center where each observable element reports itself. Any

object can subscribe to any observable during its lifetime. As a

result, when an event is raised, any subscriber can receive it

instantly.

Event-driven designs are hard to debug and maintain.

However, we believe a decoupled logic is cheaper to modify, thus,

outweighing its disadvantages. We will use the component pattern

to allow an object to subscribe to multiple events by controlling the

full life cycles of concrete Observer objects. The object will have

strict control over its components. These components will be

encapsulated in a wrapper object, acting as an API for concrete

objects to control their event flow.

One of the key design goals of our application is accessibility.

Visually impaired users must be able to navigate the app on their

own. Considering many accessible UI elements will be exposed to

the user, their actions have to be controlled. To separate

3

accessibility logic, and button functionality, the command design

pattern will be used.

Every button is an UIBase element that extends to

IAccessibility. However, if accessible elements contain logic other

than accessibility, the system would break SOLID principles. As a

result, UI elements will signal to a command center whenever they

are triggered. The command center will call the required command

to execute the logic while the UI element is only responsible for

providing an accessible interface to the user. As a result, it is

cheaper to modify existing logic, and easier to add new accessible

elements.

The application has a singleton service center. OverSeer has

two main services: navigation and live stream. Moreover, there are

support services such as object detection, voice recognition,

accessibility. There should be only one service instance that must

act as an API for the control objects. These services will be

encapsulated in a singleton factory object, allowing ease of access

to any service. Although this increases coupling, the services act as

an API. Therefore, depreciated function calls could easily be

refactored.

There will be a state center that employs the state machine

pattern. Each state could call a relevant service upon state entry

and exit. Furthermore, each state may act as a quality controller to

ensure the system is not corrupted. Although the state pattern

introduces additional complexity, it could be used to strictly control

user input. This increases the reliability of the application.

1.2 Interface Documentation Guideline

The convention we follow for our interfaces can be described

with the following regular expression: “I.*”. anything that starts

with an I is an interface. We use interfaces to dynamically distribute

functionalities to distinct concrete objects. Following interfaces will

be used in OverSeer:

● IAccessible: ​This interface ensures that a UI element is

accessible. Upon touch, the UI element having this interface

provides accessible support.

● ICommand: ​This interface provides polymorphism for

multiple concrete objects. When an input or event trigger is

received, the relevant ICommand is called. Allows the

command pattern to be implemented.

4

● IService: ​There are many services in the application.

IService provides a polymorphic collection for all the services

for them to be encapsulated in a factory.

● IState: ​A concrete object implementing IState is necessarily

strictly controlled by the state center service.

● ISubscriber<T>: ​Generic subscriber (observer). The

concrete object implementing this can subscribe to any

publisher (observable) of type T.

● CustomEvent: ​This is the base class for every custom event

in OverSeer. Any ISubscriber can implement a concrete

interface that extends to the custom event class to receive

dispatched events.

● SubscriberComponent<T>: ​This is a generic base

component class for allowing concrete objects to have

multiple concrete objects implementing ISubscriber<T> so

that they could receive multiple events. As a result, single

responsibility and extensibility is introduced.

1.3 Engineering Standards

It is important for our application to comply with the

standards of the software. Standards provide documentation to

ensure reliability and quality [1]. Since OverSeer is developed for

the visually impaired, it is critical to provide safety, security, and

reliability.

Our goal is to comply with ISO standards. ISO ICS 35

provides standards over information technology. By the end of our

development life-cycle, we aim to comply with software standards

by following ISO ICS 35.080 documentation on quality assurance

[2].

1.4 Definitions, Acronyms, and Abbreviations

● Jitsi: ​Jitsi is a Web-RTC application library. It also provides a

video conferencing service that can be installed into the

application main server. Jitsi connects users to each other

with this conferencing server. The users can access this server

via Jitsi Socket.

5

● YOLOv5: ​YOLO(You Only Look Once) is a famous object

detection model to determine the location of certain objects

and their classes. After it was first released in 2016, it is

frequently used for real object detection tasks and the most

current version is the v5. We finetuned the pre-trained

YOLOv5 weights with our custom dataset.

● Mapbox: Mapbox is a mapping API that also provides native

support for mobile. Mapbox provides several services as API,

namely, ready to use map UIs with dynamic route drawings,

navigation support, and search capabilities. These are the

services that we use mainly to develop our application.

● Firebase: ​Firebase is a Backend-as-a-Service (Baas). It

provides developers with a variety of tools and services to

help them develop quality apps, grow their user base, and

earn profit. It is built on Google's infrastructure. Firebase is

categorized as a NoSQL database program, which stores data

in JSON-like documents.

2 Packages

2.1 Internal Packages

2.1.1 Camera2

Camera2 is the internal hardware package Android provides

after the Camera package got deprecated. From the official

documentation: “​This package models a camera device as a

pipeline, which takes in input requests for capturing a single frame,

captures the single image per the request, and then outputs one

capture result metadata packet, plus a set of output image buffers

for the request. The requests are processed in-order, and multiple

requests can be in flight at once. Since the camera device is a

pipeline with multiple stages, having multiple requests in flight is

required to maintain full framerate on most Android devices” [3].

We use this package to obtain a manager and control the

back camera of the phone (if it exists and if we get permission to it)

to scan the environment, obtain frames and send it to the detection

subsystem for prediction and further processes. It is an essential

package to our detection support subsystem.

6

2.1.2 Android.Speech.TTS

Android system library for processing text input to output

voice commands. This package is used by the feedback service to

alert the user on various activities.

2.2 External Packages

2.2.1 Pytorch

Pytorch is a well-known machine learning library that allows

developers to train and use several types of models for many tasks.

In this project, Pytorch is used for training machine learning models

(in Python). To load these trained model weights and perform

detection tasks, Pytorch Android library is used. It is essential for us

to use optimized algorithms of this library for a lower inference time

and a more efficient system performance.

2.2.2 OpenCV

OpenCV is a well-known image processing library that allows

developers to perform several operations on a visual object such as

images, videos, etc. In this project, OpenCV is used to preprocess

the frames that are captured through the camera of the phone and

get them ready to be used by the detection models. For a lower

inference time and a better performance, using optimized

algorithms of this library is important for the project.

2.2.3 Mapbox.Directions

Mapbox.Directions API can provide point to point navigation

routes with several alternatives. The given routes are combined of

directions. The directions are separated by turns throughout the

route. Additionally, the API provides a textual explanation of each

direction along with the start and end coordinates.

2.2.4 Mapbox.MapMatching

7

Mapbox.MapMatching API provides the real-time information

for the user. For example, it provides the direction of the user and

matches between the direction and the route. Also, it can provide

remaining duration information about the route.

2.2.5 Mapbox.Geocoding

Mapbox.Geocoding API provides basic search capabilities.

Searching locations with a keyword its main capability. It provides

several alternatives for the given keyword regarding user’s current

location, the popularity of places, and several other metrics. This

API also provides special IDs (POI) to places. This way, a place can

be represented by a unique ID (POI), and the location can be stored

easily.

2.2.6 Mapbox.VectorTiles

Mapbox.VectorTiles API provides the required visual contents

for the application. It includes the map itself mainly, but not limited

to that. The API also provides real-time route and location drawing

onto the map. This way, the user can follow the route visually, as

well, which will be optional in our application.

8

3 Class Interfaces

3.1 Live Support Subsystem Service

Fig 1. Live Support Subsystem Service

3.1.1 Live Support Manager Subsystem Service

Fig 2. Live Support Manager Subsystem Service

9

LiveSupportManager subsystem provides a service to manage

all the communication between the server and the client. It listens

to requests done by the server or done by the app.

3.1.1.1 Room

Attributes:

● String roomId: ​The unique id of the room that connects the

volunteer and the visually impaired user.

Methods:

● private int startServer(): ​It starts the server and creates a

room. It returns the id of the room.

3.1.1.2 JitsiSocket

Attributes:

● jitsiAttributes: ​This attribute includes the detailed

information of the jitsi UI and jitsi server such as http

information of the server.

Methods:

● private void onCreate(): ​It starts the jitsi API.

● public int listen(int port): ​By using the server instance of

the App, it makes socket listens on the specified events.

3.1.1.3 App

Attributes:

● server: ​It keeps the server details(Jitsi).

Methods:

● public void specifyJitsiUI(): ​It receives the user’s

information and orders the UI of the video meeting(Jitsi)

according to them.

10

3.1.2 User Subsystem Service

Fig 3. User Subsystem Service

The user subsystem provides a service to manage all the

requests done by the user to the server and configure the UI.

3.1.2.1 FirebaseService

Methods:

● public void firebaseAccess(User user, String command):

It sends commands to Firebase to change server databases

and make call notifications.

3.1.2.2 Participant

Attributes:

● theUser: ​This attribute includes the detailed information of

the user.

● contactList: ​It keeps saved contacts in order to call them.

● roomId: ​It keeps which room is assigned for the user.

Methods:

● public void addContact(User toAdd): ​It adds the “toAdd”

user to the contact list.

● public void removeContact(User toRemove): ​It removes

the “toRemove” user from the contact list.

● public void updateContacts(User[] toUpdate): ​It updates

all of the “toUpdate” list both in UI and Firebase.

11

● public void finishCall(): ​It finishes the current call and

returns the main menu of the application.

● public void flipCamera(): ​If the device has more than two

cameras it changes the streaming camera.

● public void giveError(ErrorModel error, String

message): ​If there is an error this function sends an error

message.

● public void startCall(Participant callee): ​It starts the live

support call according to callee.

● public void findVolunteer(): ​It finds an available volunteer

to the user.

● public void acceptCall(): ​It accepts and starts the call if the

volunteer presses the accept button.

● public void rejectCall(): ​It rejects and closes the call if the

volunteer presses the reject button.

3.1.3 Error Subsystem Service

Fig 4. Error Subsystem Service

Error subsystem provides a service to handle all the

exceptions or errors happening during the application. It provides a

safe and robust environment in the online call.

3.1.3.1 ErrorModel

Attributes

● int code: ​Code specified for a particular error type.

12

● String message: ​Error message.

● int status: ​Status code for the error.

3.1.4 Notification & Report Subsystem Service

Fig 5. Notification & Report Subsystem Service

Notification & report subsystem provides a service to handle

the notifications before the call and report the volunteer after the

call.

3.1.4.1 UserConnectionModel

Attributes:

● callee: ​This attribute includes the detailed information of the

callee user.

● caller: ​This attribute includes the detailed information of the

caller user.

● time: ​It keeps the elapsed time of the call.

● status: ​It keeps the current status of the call.

Constructor:

● public UserConnectionModel(Participant caller,

Participant callee): ​It creates the UserConnectionModel

according to the caller and the callee.

13

3.1.4.2 NotificationModel

Methods:

● public void sendNotification(): ​It sends a notification to

the callee.

3.1.4.3 ReportModel

Methods:

● public void sendReportMessage(String message): ​If the

user wants to report the other user this function sends a

report message after the call.

3.2 Detection Support Subsystem Service

Fig 6. Detection Support Subsystem Service

14

Fig 7. CameraPreview Class

3.2.1 Camera Subsystem

Camera subsystem has 2 main functionalities, providing a

camera preview and capturing frames, and sending them to the

model for prediction. Additionally, it can show the labeled prediction

image on a part of the texture view (camera view). For this, the

subsystem has a main class: CameraPreview. CameraPreview is

responsible for providing a general camera functionality and it is

responsible for regularly capturing camera frames and processing

them together with the detection subsystem.

3.2.1.1 CameraPreview

Attributes:

● String cameraId: ​stores the id of the camera, which is used

to identify the camera on the phone.

● CameraDevice cameraDevice: ​manager of the camera

hardware on the phone.

● CameraCaptureSession captureSession: ​stores the

camera capturing session at that given instance.

15

● Builder requestBuilder: ​builds the camera capture on a

given surface.

● Handler mBackgroundHandler: handler for the camera

preview process.

● HandlerThread mBackgroundThread: a ​thread for the

camera preview process

● StateCallback stateCallback: ​handles the state changes of

the camera hardware of the phone (open, disconnected, error

etc.).

● DetectionManager detectionManager: ​The manager that

controls all the detectors of the application. It uses the

camera to gather frames for predictions and warnings event

generations.

● TextureView textureView: ​holds the camera preview as a

texture on the screen.

● ImageView imageView: ​holds the manipulated image (by

detection subsystem).

● Size imageSize: ​holds the size of the image on the preview.

● TextureListener textureListener: ​listens to the events of

the textureView, or in other words camera preview.

Specifically, the frame changes.

Methods:

● public void onCreate(Bundle savedInstanceState,

DetectionManager detectionManager): ​Initializes the

camera preview activity (or in other words, the class itself as

its an activity class) from the given detection manager class.

● private void createCameraPreview(): ​Initializes the

camera related attributes and creates a camera preview on

the specified texture view.

● private void updatePreview(Bundle

savedInstanceState): ​Updates the created camera preview

with each camera configuration change.

● private void openCamera(Bundle savedInstanceState):

Prepares and opens up the camera hardware of the phone if

the camera access is granted.

● public void onRequestPermissionsRequest(int code,

String[] permissions, int[] grants): ​Checks if a given

permission access is for the camera permission.

● protected void onResume(): ​If the activity is resumed (by

user), the camera is opened again and the process thread is

run again.

● protected void onPause(): ​If the activity is paused(by

user), camera is closed and the process thread is joined.

● private void stopBackgroundThread(): ​Joins and stops

the thread for the preview process.

16

● private void startBackgroundThread(): ​Stars the preview

process thread.

● public void onSurfaceTextureUpdated(SurfaceTexture

surface): ​With each frame change, this method gets the

frame from the surface, changes it to a bitmap and sends it to

be processed. Also sets the imageView to the labeled

prediction image if the user wants the option.

3.2.2 Detection Subsystem

Fig 8. Detection Subsystem Service

3.2.2.1 DetectionManager

Attributes:

● ArrayList<Detector> detectors: ​List of detectors used for

detection tasks such as traffic light detection and obstacle

detection.

Methods:

● public ArrayList< Detection > performDetection(frame

): ​It is called by CameraSubsystem to process the given

frame and perform the detection tasks.

17

● public void generateWarning(Detection detection): ​It

generates required warnings according to the given detection

result. After it converts label no into the actual label text

through Constant class. Then it sends a feedback event

through the EventCenterAPI for generating sound output.

3.2.2.2 Detector

Methods:

● public ArrayList<Detection> detect(image): ​Abstract

method to be overridden by the actual detector classes.

3.2.2.3 FrameProcessor

Methods:

● public process(frame): ​Abstract method to be overridden

by the actual processor classes.

3.2.2.4 ObstacleDetector

Methods:

● public ArrayList<Detection> detect(image): ​It performs

the obstacle detection task with the model and the given

image. It returns a list of detection objects that are generat​ed

according to the output received from the obstacle detection model.

3.2.2.5 TrafficLightDetector

Methods:

● public ArrayList<Detection> detect(image): ​It performs

the traffic light state detection task with the model and the

given image. It returns a list of detection objects that are

generated according to the output received from the traffic

light state detection model.

3.2.2.6 ObstacleFrameProcessor

Methods:

18

● public process(frame): ​It prepares the given image for the

obstacle detection model. It performs operations such as

resizing, scaling, etc.

3.2.2.7 TrafficLightFrameProcessor

Methods:

● public process(frame): ​It prepares the given image for the

traffic light state detection model. It performs operations such

as resizing, scaling, etc.

3.2.2.8 Constants

Attributes:

● string[] obstacleLabels: ​List of labels in text format for the

obstacles (such as person, car, fire hydrant, etc).

● string[] trafficLight: ​List of labels in text format for the

traffic light states (red, yellow, green).

3.2.2.9 Detection

Attributes:

● DetectionType detectionType: ​It specifies type of the

detection. It is either OBSTACLE or TRAFFIC_LIGHT.

● int labelNo: ​It specifies the number of the detected class.

19

3.3 EventFlow Subsystem

Fig 9. EventFlow Subsystem

EventFlow subsystem is responsible for managing and

distributing events.

3.3.1 Abstract CustomEvent

Base for every custom defined event. Empty class.

3.3.2 EventCenter

Attributes:

● static Hashtable< Class<? extends CustomEvent>,

HashSet<ISubscriber<CustomEvent>>

eventSubscriberLists: ​Stores every observer of type custom

event in the relevant set.

Methods:

● public static <T extends CustomEvent> void

RegisterSubscriber(Class<T> type, ISubscriber<T>

subscriber): ​Makes a subscriber (observer) unregister

listening to the custom event T.

● public static <T extends CustomEvent> void

UnregisterSubscriber(Class<T> type, ISubscriber<T>

subscriber): ​Makes a subscriber (observer) unregister

listening to the custom event T.

20

● public static <T extends CustomEvent> void

SendEvent(T event): ​Sends event to the subscribers.

3.3.3 ISubscriber<T>

Methods:

● public void notifyEvent(T event): ​Contracts a concrete

class to receive events of type T.

3.3.4 Abstract SubscriberComponent<T>

Methods:

● public void SubscribeToEvents(): ​Subscribes to the events

of type T.

● public void UnsubscribeToEvents(): ​Unsubscribes to the

events of type T.

3.3.5 Concrete Class<? extends Object>

Represents that any class having SubscriberComponents may

receive events and any class can create any type of event.

21

3.4 Command Center Subsystem

Fig 10. Command Center Subsystem

3.4.1 ICommand

Defines an interface for concrete classes to hide operations

behind simple commands.

Methods:

● public void executeCommand(): ​Contracts a concrete class

to execute the received command.

3.4.2 Abstract CommandHandler

Base class for all concrete command objects. Command

objects can receive commands and execute certain functionalities.

3.4.3 CommandCenter

Encapsulates and controls each concrete command object.

Acts as an interface between command requests and execution of

the command.

Attributes:

● Hashtable< enum CommandType, ICommand command

> commands: ​Stores every command object related to UI

inputs. Allows cheap extension of new commands.

22

Methods:

● public void notifyEvent(OnUIInputEvent

onInputEvent): ​Receives UI events and calls requested

command.

3.4.4 StartNavigationCommand

Command object for starting navigation service.

3.4.5 StartLiveStreamCommand

Command object for starting live stream service.

3.4.6 ConfirmCommand

Command object for confirming previously requested

command.

3.4.7 RejectCommand

Command object for rejecting previously requested command.

3.4.8 HelperModeCommand

Command object for setting up the application for the helper

users.

3.4.9 VisuallyImpairedModeCommand

Command object for setting up the application for the visually

impaired users.

3.5 Feedback Subsystem

23

Fig 11. Command Center Subsystem

3.5.1 FeedBackService

Handles voice output requests by any concrete object.

Receives requests as events.

Methods:

● public void notifyEvent(FeedbackEvent feedback):

Receives feedback event. Checks if the system can play the

feedback. Else, adds the feedback request to the queue or

interrupts the current feedback according to the request.

● private boolean checkFeedBackQueue(): ​Checks if the

android system is available for playing sound.

● private void playFeedBack(): ​Plays the requested

feedback.

24

3.6 UI Subsystem

Fig 12. UI Subsystem Service

3.6.1 IAccessible

Methods:

● public void setHintText(): ​Receives feedback event. Checks

if the system can play the feedback. Else, adds the feedback

request to the queue or interrupts the current feedback

according to the request.

● public void setSelectedText(): ​Checks if the android

system is available for playing sound.

● public void setupAccessibility(): ​Receives UI events and

calls requested commands.

3.6.2 Abstract AccessibleUIBase

Methods:

● public void onTouch(): ​Starts accessibility functionalities

upon touch.

3.6.3 Abstract AccessibleInputField

Methods:

25

● public void onInput(): ​Gets the input from the accessible ui

element and makes the relevant input event for the command

center.

3.6.4 AccessibleCheckBox

Base class for accessible generic checkbox. The engineer may

use this class to create concrete checkboxes to get input on a

variety of functionalities.

Attributes:

● Checkbox checbox: ​Checkbox ui component.

3.6.5 AccessibleTextField

Base class for accessible generic text field. The engineer may

use this class to create concrete text fields to get input on a variety

of functionalities.

Attributes:

● TextField textField: ​TextField ui component.

3.6.6 AccessibleUILabel

Base class for accessible generic label. The engineer may use

this class to create concrete labels to navigate the user in-app.

Attributes:

● Label label: ​Label UI component.

3.6.7 AccessibleUIButton

Base class for the accessible generic button. The engineer

may use this class to create concrete buttons to get input on a

variety of functionalities.

Attributes:

● Button button: ​Button UI component.

26

3.6.8 AccessibleUIGroup

Groups multiple accessible elements to make them one

accessible group component.

Attributes:

● IAccessible accessibleComponents: ​Accessible children

components

27

3.7 Navigation Subsystem

Fig 13. Navigation Subsystem Service

3.7.1 DestinationManager

Methods:

● public Arraylist<Location> searchDestionations(String

location): Returns possible destinations according to the

given string, so it tries to match destinations with the input by

using Mapbox API.

28

● public ArrayList<Location> searchByInterest(String

location): Returns possible destinations according to the

given string. Used when a specified generic search is desired,

namely, supermarket. This also communicates to Mapbox API.

● public ArrayList<Location> getFavorites(): Returns the

favorite locations of a user. Communicates to firebase to get

stored data.

● public void saveFavorite(Location location): Saves a

favorite location for the current user. Communicates to

firebase to store data.

● public void editFavorite(Location oldLoc, Location

newLoc): Edits a favorite location of the current user.

Communicates to firebase.

3.7.2 NavigationManager

Methods:

● public ArrayList<Route> getRoute(Location location):

Returns possible routes from my current direction to the

specified location.

● public Boolean checkOffRoute(): Checks if the user obeys

the current route. If the user follows the current route, it

returns true, otherwise false.

● public void performRoute(Route route): Performs the

given route. In each step, it executes the next direction of the

current route.

3.7.3 MapRenderer

Attributes:

● private Boolean mapStatus: Indicates if the map is visible

or not.

Methods:

● public void showHideMap(): Toggles the visibility of the

map.

● public void updateView(): Updates the current state of the

map regarding the current route, direction, location and so

on. It interacts with the Mapbox API.

29

3.7.4 Route

Attributes:

● private ArrayList<Direction> directions: Keeps the

individual directions of the route.

● private int duration: Indicates the total duration of the

current route.

● private String title:​ Indicates the title of the route.

● private int nextDirectionIndex: Indicates the last executed

direction in the current route.

Methods:

● public Route(JSON route): The constructor. Parses the

JSON and forms the directions in an appropriate form.

● public Direction nextDirection(): Returns the next

direction to be performed by the related class.

● public void resetRoute(JSON route): When the user goes

off-route, the current route is resetted and updated with the

new one.

3.7.5 Direction

Attributes:

● private String text: Indicates the textual representation of

the direction.

● private String startCoordinate: Indicates the coordinate of

the start location of this direction.

● private String endCoordinate: Indicates the coordinate of

the end location of this direction.

Methods:

● public Direction(JSON direction): The constructor. Parses

the given JSON into an appropriate form.

● public void tellDirection(): Interacts with the related

method of the related class to tell the direction by sound.

3.7.6 Location

Attributes:

● private String poi: Indicates the POI(Point Of Interest)

representation of the location.

● private String coordinate: Indicates the longitude/latitude

representation of the location.

30

● private String title:​ The formal title of the location.

● private String customName: The custom name of the

location that may be given by the user.

Methods:

● public Location(String poi): The constructor. Parses the

POI and sets the related attributes accordingly.

● public String translatePoiToCoordinate(String poi):

translates a given POI to longitude/latitude.

● static public Location getMyLocation(): Returns the

current location of the user. Uses the GPS of the user's phone

and interact with the mapbox API.

31

4 References

[1] “What are Standards,” ​library.rose, ​Feb. 01, 2021. [Online].

Available:

https://library.rose-hulman.edu/c.php?g=104543&p=888557​.
[Accessed: 08.02.2021].

[2] “ISO Standards,” ​iso, ​[Online]. Available:

https://www.iso.org/standards-catalogue/browse-by-ics.html​.
[Accessed: 08.02.2021].

[3] “Camera2,” ​developer.android, ​[Online]. Available:

https://developer.android.com/reference/android/hardware/c

amera2/package-summary​. ​[Accessed: 08.02.2021].

32

https://library.rose-hulman.edu/c.php?g=104543&p=888557
https://www.iso.org/standards-catalogue/browse-by-ics.html
https://developer.android.com/reference/android/hardware/camera2/package-summary
https://developer.android.com/reference/android/hardware/camera2/package-summary

